dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel MOPS-1.0: towards a model for the regulation of the global oceanic nitrogen budget by marine biogeochemical processes
VerfasserIn I. Kriest, A. Oschlies
Medientyp Artikel
Sprache Englisch
ISSN 1991-959X
Digitales Dokument URL
Erschienen In: Geoscientific Model Development ; 8, no. 9 ; Nr. 8, no. 9 (2015-09-23), S.2929-2957
Datensatznummer 250116561
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/gmd-8-2929-2015.pdf
 
Zusammenfassung
Global models of the oceanic nitrogen cycle are subject to many uncertainties regarding the representation of the relevant biogeochemical processes and of the feedbacks between nitrogen sources and sinks that determine space- and timescales on which the global nitrogen budget is regulated. We investigate these aspects using a global model of ocean biogeochemistry that explicitly considers phosphorus and nitrogen, including pelagic denitrification and nitrogen fixation as sink and source terms of fixed nitrogen, respectively. The model explores different parameterizations of organic matter sinking speed, oxidant affinity of oxic and suboxic remineralization, and regulation of nitrogen fixation by temperature and different stoichiometric ratios. Examination of the initial transient behavior of different model setups initialized from observed biogeochemical tracer distributions reveal changes in simulated nitrogen inventories and fluxes particularly during the first centuries. Millennial timescales have to be resolved in order to bring all biogeochemical and physical processes into a dynamically consistent steady state. Analysis of global properties suggests that not only particularly particle sinking speed but also the parameterization of denitrification determine the extent of oxygen minimum zones, global nitrogen fluxes, and hence the oceanic nitrogen inventory. However, the ways and directions in which different parameterizations of particle sinking, nitrogen fixation, and denitrification affect the global diagnostics are different suggesting that these may, in principle, be constrained independently from each other. Analysis of the model misfit with respect to observed biogeochemical tracer distributions and fluxes suggests a particle flux profile close to the one suggested by Martin et al. (1987). Simulated pelagic denitrification best agrees with the lower values between 59 and 84 Tg N yr−1 recently estimated by other authors.
 
Teil von