dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Use of neural networks in ground-based aerosol retrievals from multi-angle spectropolarimetric observations
VerfasserIn A. Noia, O. P. Hasekamp, G. Harten, J. H. H. Rietjens, J. M. Smit, F. Snik, J. S. Henzing, J. Boer, C. U. Keller, H. Volten
Medientyp Artikel
Sprache Englisch
ISSN 1867-1381
Digitales Dokument URL
Erschienen In: Atmospheric Measurement Techniques ; 8, no. 1 ; Nr. 8, no. 1 (2015-01-14), S.281-299
Datensatznummer 250116052
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/amt-8-281-2015.pdf
 
Zusammenfassung
In this paper, the use of a neural network algorithm for the retrieval of the aerosol properties from ground-based spectropolarimetric measurements is discussed. The neural network is able to retrieve the aerosol properties with an accuracy that is almost comparable to that of an iterative retrieval. By using the outcome of the neural network as first guess in the iterative retrieval scheme, the accuracy of the retrieved fine- and coarse-mode optical thickness is further improved, while for the other parameters the improvement is small or absent. The resulting scheme (neural network + iterative retrieval) is compared to the original one (look-up table + iterative retrieval) on a set of simulated ground-based measurements, and on a small set of real observations carried out by an accurate ground-based spectropolarimeter. The results show that the use of a neural-network-based first guess leads to an increase in the number of converging retrievals, and possibly to more accurate estimates of the aerosol effective radius and complex refractive index.
 
Teil von