dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Refractory black carbon mass concentrations in snow and ice: method evaluation and inter-comparison with elemental carbon measurement
VerfasserIn S. Lim, X. Faïn, M. Zanatta, J. Cozic, J.-L. Jaffrezo, P. Ginot, P. Laj
Medientyp Artikel
Sprache Englisch
ISSN 1867-1381
Digitales Dokument URL
Erschienen In: Atmospheric Measurement Techniques ; 7, no. 10 ; Nr. 7, no. 10 (2014-10-07), S.3307-3324
Datensatznummer 250115920
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/amt-7-3307-2014.pdf
 
Zusammenfassung
Accurate measurement of black carbon (BC) mass concentrations in snow and ice is crucial for the assessment of climatic impacts. However, it is difficult to compare methods used to assess BC levels in the literature as they are not the same. The single particle soot photometer (SP2) method appears to be one of the most suitable to measure low concentrations of BC in snow and ice. In this paper, we evaluated a method for the quantification of refractory BC (rBC) in snow and ice samples coupling the SP2 with the APEX-Q nebulizer. The paper reviews all the steps of rBC determination, including SP2 calibration, correction for rBC particle aerosolization efficiency (75 ± 7% using the APEX-Q nebulizer), and treatment of the samples. In addition, we compare the SP2 method and the thermal–optical method – Sunset organic carbon (OC) / elemental carbon (EC) aerosol analyzer with EUSAAR2 protocol – using snow and firn samples with different characteristics from the Greenland Summit, the French Alps, the Caucasus, and the Himalayas. Careful investigation was undertaken of analytical artifacts that potentially affect both methods. The SP2-based rBC quantification may be underestimated when the SP2 detection range does not cover correctly the existing size distribution of the sample. Thermal–optical EC measurements can be underestimated by low filtration efficiency of quartz fiber filter before analysis or dust properties (concentration and type), and overestimated by pyrolyzed OC artifacts during EC analysis. These results underline the need for careful assessment of the analytical technique and procedure for correct data interpretation.
 
Teil von