dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Regional scale ozone data assimilation using an ensemble Kalman filter and the CHIMERE chemical transport model
VerfasserIn B. Gaubert, A. Coman, G. Foret, F. Meleux, A. Ung, L. Rouïl, A. Ionescu, Y. Candau, M. Beekmann
Medientyp Artikel
Sprache Englisch
ISSN 1991-959X
Digitales Dokument URL
Erschienen In: Geoscientific Model Development ; 7, no. 1 ; Nr. 7, no. 1 (2014-02-13), S.283-302
Datensatznummer 250115543
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/gmd-7-283-2014.pdf
 
Zusammenfassung
An ensemble Kalman filter (EnKF) has been coupled to the CHIMERE chemical transport model in order to assimilate ozone ground-based measurements on a regional scale. The number of ensembles is reduced to 20, which allows for future operational use of the system for air quality analysis and forecast. Observation sites of the European ozone monitoring network have been classified using criteria on ozone temporal variability, based on previous work by Flemming et al. (2005). This leads to the choice of specific subsets of suburban, rural and remote sites for data assimilation and for evaluation of the reference run and the assimilation system. For a 10-day experiment during an ozone pollution event over Western Europe, data assimilation allows for a significant improvement in ozone fields: the RMSE is reduced by about a third with respect to the reference run, and the hourly correlation coefficient is increased from 0.75 to 0.87. Several sensitivity tests focus on an a posteriori diagnostic estimation of errors associated with the background estimate and with the spatial representativeness of observations. A strong diurnal cycle of both these errors with an amplitude up to a factor of 2 is made evident. Therefore, the hourly ozone background error and the observation error variances are corrected online in separate assimilation experiments. These adjusted background and observational error variances provide a better uncertainty estimate, as verified by using statistics based on the reduced centered random variable. Over the studied 10-day period the overall EnKF performance over evaluation stations is found relatively unaffected by different formulations of observation and simulation errors, probably due to the large density of observation sites. From these sensitivity tests, an optimal configuration was chosen for an assimilation experiment extended over a three-month summer period. It shows a similarly good performance as the 10-day experiment.
 
Teil von