dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel What can d7Li tell us about sources and flow pathes of river water (Western Pamir, Tajikistan)?
VerfasserIn Christiane Meier, Malte Knoche, Karsten Osenbrück, Hans-Michael Seitz, Stephan M. Weise
Konferenz EGU General Assembly 2015
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 17 (2015)
Datensatznummer 250113495
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2015-13704.pdf
 
Zusammenfassung
The high alpine regions in Central Asia are the headwaters for big river systems such as the Amu Darya, which is intensively used for agricultural purposes. For the local water resources management it is important to understand the key factors and processes of runoff generation. It is assumed, that the dominant factors for runoff generation are glacier and snow melt in the Pamir Mountains. However the influence of ground water to river water is also an important factor but still not well understood. We investigated the River Gunt catchment as an exemplary catchment for the Pamir Mountains to identify the origin and to quantify the portion of ground water. Thereby we analyzed water samples of river water, subsurface water, thermal water and glacier water for 7Li. We detected a wide range of 7Li values (from +7‰ to +30‰), whereas the highest values were measured in the glacier melt water at the glacier snout (7Li = +28.8‰) which are similar to the 7Li value of sea water, the lowest values were found in the samples of thermal water and springs in solid rock (7Li between +8‰ and +11‰), the samples of river water are more or less placed on a mixing line in between. We assume that tributaries showing an isotope signature similar to the glacier ones are mainly controlled by melt water while water samples with 7Li values comparable to the 7Li values of subsurface water samples pass through the underground or have a strong interaction between river water and river bed. The water samples of the main stream Gunt also show low 7Li values so we assume a strong contribution of subsurface water to the total runoff or an intensive water-rock-interaction in its riverbed.