dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Thermodynamic and fracture mechanical processes in the context of frost wedging in ice shelves
VerfasserIn Carolin Plate, Ralf Müller, Angelika Humbert, Dietmar Gross
Konferenz EGU General Assembly 2015
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 17 (2015)
Datensatznummer 250113494
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2015-13703.pdf
 
Zusammenfassung
Ice shelves, the link between ice shields or glaciers and the ocean are sensitive elements of the polar environment. The ongoing break up and disintegration of huge ice shelf parts or entire ice shelf demands for an explication of the underlying processes. The first analyses of crack growth and break up events in ice shelves date back to more than half a century. Nevertheless, the mechanisms that trigger and influence the collapse of whole ice shelf parts are not yet fully understood. Popular presumptions link ice shelf disintegration to surface meltwater and hydro fracturing, explaining break up events in warm polar seasons. Fracture events during colder seasons are possibly triggered by more complex mechanisms. A well-documented break up event at the Wilkins Ice Shelf bridge inspires the possibility of frost wedging as disintegration cause. The present study shows a two-dimensional thermo-dynamical model simulating the growth of an ice lid in a water-filled crevasse for measured surface temperatures. The influence of the crevasse geometry and the ice shelf temperature are shown. The resulting lid thickness is then used for the linear elastic fracture mechanical analysis. The maximum crack depth is estimated by comparing the computed stress intensity factors to critical values KIc obtained from literature. The thermodynamic as well as the fracture mechanical simulation are performed using the commercial finite element code COMSOL. The computation of KI follows in post processing routines in MATLAB exploiting the benefits of the concept of configurational forces.