dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Towards guided data assimilation for operational hydrologic forecasting in the US Tennessee River basin
VerfasserIn Albrecht Weerts, Andy Wood, Shaun Carney, Jay Day, Matthijs Lemans, Julius Sumihar, Jan Verkade, Andy Newman
Konferenz EGU General Assembly 2015
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 17 (2015)
Datensatznummer 250111813
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2015-11956.pdf
 
Zusammenfassung
In the US, the forecasting approach used by the NWS River Forecast Centers and other regional organizations such as the Bonneville Power Administration (BPA) or Tennessee Valley Authority (TVA) has traditionally involved manual model input and state modifications made by forecasters in real-time. This process is time consuming and requires expert knowledge and experience. The benefits of automated data assimilation (DA) as a strategy for avoiding manual modification approaches have been demonstrated in research studies (eg. Seo et al., 2009). This study explores the usage of various ensemble DA algorithms within the operational platform used by TVA. The final goal is to identify a DA algorithm that will guide the manual modification process used by TVA forecasters and realize considerable time gains (without loss of quality or even enhance the quality) within the forecast process. We evaluate the usability of various popular algorithms for DA that have been applied on a limited basis for operational hydrology. To this end, Delft-FEWS was wrapped (via piwebservice) in OpenDA to enable execution of FEWS workflows (and the chained models within these workflows, including SACSMA, UNITHG and LAGK) in a DA framework. Within OpenDA, several filter methods are available. We considered 4 algorithms: particle filter (RRF), Ensemble Kalman Filter and Asynchronous Ensemble Kalman and Particle filter. The initial results are promising. We will present verification results for these methods (and possible more) for a variety of sub basins in the Tennessee River basin. Finally, we will offer recommendations for guided DA based on our results. References Seo, D.-J., L. Cajina, R. Corby and T. Howieson, 2009: Automatic State Updating for Operational Streamflow Forecasting via Variational Data Assimilation, 367, Journal of Hydrology, 255-275.