dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel A comparison of measured HONO uptake and release with calculated source strengths in a heterogeneous forest environment
VerfasserIn Matthias Sörgel, Ivonne Trebs, Dianming Wu, Andreas Held
Konferenz EGU General Assembly 2015
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 17 (2015)
Datensatznummer 250111599
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2015-11735.pdf
 
Zusammenfassung
Vertical mixing ratio profiles of nitrous acid (HONO) were measured in a clearing and on the forest floor in a rural forest environment (in the south-east of Germany) by applying a lift system to move the sampling unit of the LOng Path Absorption Photometer (LOPAP) up and down. For the forest floor, HONO was found to be predominantly deposited, whereas net deposition was dominating in the clearing only during nighttime and net emissions were observed during daytime. For selected days, net fluxes of HONO were calculated from the measured profiles using the aerodynamic gradient method. The emission fluxes were in the range of 0.02 to 0.07 nmol m-2 s-1, and, thus were in the lower range of previous observations. These fluxes were compared to the strengths of postulated HONO sources and to the amount of HONO needed to sustain photolysis in the boundary layer. Laboratory measurements of different soil samples from both sites revealed an upper limit for soil biogenic HONO emission fluxes of 0.025 nmol m-2 s-1. HONO formation by light induced NO2 conversion was calculated to be below 0.03 nmol m-2 s-1 for the investigated days, which is comparable to the potential soil fluxes. Due to light saturation at low irradiance, this reaction pathway was largely found to be independent of light intensity, i.e. it was only dependent on ambient NO2. We used three different approaches based on measured leaf nitrate loadings for calculating HONO formation from HNO3 photolysis. While the first two approaches based on empirical HONO formation rates yielded values in the same order of magnitude as the estimated fluxes, the third approach based on available kinetic data of the postulated pathway failed to produce noticeable amounts of HONO. Estimates based on reported cross sections of adsorbed HNO3 indicate that the lifetime of adsorbed HNO3 was only about 15 min, which would imply a substantial renoxification. Although the photolysis of HNO3 was significantly enhanced at the surface, the subsequent light induced conversion of the photolysis product NO2 did not produce considerable amounts of HONO. Consequently, this reaction might occur via an alternative mechanism. Therefore, the semi-volatile weak acid HONO can serve as an example for the complexity of exchange processes as multiple sources and sinks are coexisting, such as (photo-) chemical formation, microbial formation, adsorption/desorption and (stomatal-) uptake.