dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel The vertical distribution of volcanic SO2 plumes measured by IASI
VerfasserIn Elisa Carboni, Roy Grainger, Tamsin A. Mather, David M. Pyle, Gareth Thomas, Richard Siddans, Andrew Smith, Anu Dudhia, MariLiza Koukouli, Dimitris Balis
Konferenz EGU General Assembly 2015
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 17 (2015)
Datensatznummer 250111263
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2015-11365.pdf
 
Zusammenfassung
Sulphur dioxide (SO2) is an important atmospheric constituent that plays a crucial role in many atmospheric processes. For example the current hiatus in global warming has been suggested to be caused by low level (< 15 km) volcanic activity (Ridley et al., 2014). Volcanic eruptions are a significant source of atmospheric SO2 and its effects and lifetime depend on the SO2 injection altitude. In the troposphere SO2 injection leads to the acidification of rainfall while in the stratosphere it oxidises to form a stratospheric H2SO4 haze that can affect climate for several years. The Infrared Atmospheric Sounding Instrument (IASI) on the Metop satellite can be used to study volcanic emission of SO2 using high-spectral resolution measurements from 1000 to 1200 cm-1 and from 1300 to 1410 cm-1 (the 7.3 and 8.7 μm SO2 bands). The scheme described in Carboni et al. (2012) has been applied to measure volcanic SO2 amount and altitude for 14 explosive eruptions from 2008 to 2012. The work includes a comparison with independent measurements: (i) the SO2 column amounts from the 2010 Eyjafjallajökull plumes have been compared with Brewer ground measurements over Europe; (ii) the SO2 plumes heights have been compared with CALIPSO backscatter profile. The results of the comparisons show that IASI SO2 measurements are not affected by underling cloud and are consistent (within the retrieved errors) with the other measurements considered. The series of analysed eruptions (2008 to 2012) show that the biggest contributor of volcanic SO2 was Nabro, followed by Kasatochi and Grímsvötn. Our observations also show a tendency of the volcanic SO2 to be injected to the level of tropopause during many explosive eruptions. For the eruptions observed, this tendency was independent of the maximum amount of SO2 erupted (e.g., 0.2ÂTg for Dalafilla compared with 1.6ÂTg for Nabro) and of the volcanic explosive index (between 3 and 5).