dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Understanding the Ecoydrology of Mangroves: A Simple SPAC Model for Avicennia Marina
VerfasserIn Saverio Perri, Francesco Viola, Leonardo Valerio Noto, Annalisa Molini
Konferenz EGU General Assembly 2015
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 17 (2015)
Datensatznummer 250111062
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2015-11126.pdf
 
Zusammenfassung
Mangroves represent one of the most carbon-rich ecosystems in the Tropics, noticeably impacting ecosystem services and the economy of these regions. Whether the ability of mangroves to exclude and tolerate salt has been extensively investigated in the literature – both from the structural and functional point of view – their eco-hydrological characteristics remains largely understudied, despite the crucial link with productivity, efficient carbon storage and fluxes. In this contribution we develop a “first-order” Soil Plant Atmosphere Continuum model for Avicennia Marina, a mangrove able to adapt to hyper-arid intertidal zones and characterized by complex morphological and eco-physiological traits. Among mangroves, Avicennia marina is one of the most tolerant to salinity and arid climatic conditions. Our model, based on a simple macroscopic approach, takes into account the specific characteristics of the mangrove ecosystem and in particular, the salinity of the water in the soil and the levels of salt stress to which the plant may be subjected. Mangrove transpiration is hence obtained by solving the plant and leaf water balance and the leaf energy balance, taking explicitly into account the role of osmotic water potential and salinity in governing plant resistance to water fluxes. The SPAC model of Avicennia is hence tested against experimental data obtained from the literature, showing the reliability and effectiveness of this minimalist model in reproducing observed transpiration fluxes. Finally, sensitivity analysis is used to assess whether uncertainty on the adopted parameters could lead to significant errors in the transpiration assessment.