dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Contributions of organic matter and organic sulfur redox processes to electron flow in anoxic incubations of peat
VerfasserIn Zhiguo Yu, Stefan Peiffer, Jörg Göttlicher, Klaus-Holger Knorr
Konferenz EGU General Assembly 2015
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 17 (2015)
Datensatznummer 250110919
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2015-10963.pdf
 
Zusammenfassung
Anaerobic decomposition of peat soils involves a number of interdependent microbial processes that ultimately generate CO2 and CH4. In many peat soils, a high ratio of CO2:CH4 was reported, which presumably results from a direct or indirect role of soil organic matter serving as an electron acceptor. Therefore, in this study we intended to test the hypothesis that organic matter (OM) suppresses methanogenesis and sustains anaerobic CO2 production, serving as i) direct electron acceptor or ii) via supporting internal sulfur cycling to maintains CO2 production through bacterial sulfate reduction (BSR). We incubated peat samples of commercial bog peat, inoculated with a small amount of fresh peat to introduce an active microbial community. Samples were amended with sulfate or sulfide and incubated under anoxic conditions for 6 weeks at 30 ˚ C. Upon anaerobic incubation of peat virtually devoid of inorganic electron acceptors, CO2 and CH4 were produced at a ratio of 3.2. According to the electron budget, the calculated electron accepting capacity (EAC) of OM was 2.36 μeq cm3 d-1. Addition of sulfate significantly increased CO2 production and effectively suppressed CH4 production. After subtracting the EAC provided though sulfate addition (0.97~2.81 μeq cm-3 d-1), EACs supplied by OM reached 3.88 to 4.85 μeq cm-3 d-1.The contribution of organic sulfur was further evaluated by XANES spectroscopy and using natural abundance of δ34S as a tracer. Results demonstrated that BSR involved both addition of H2S and sulfate to OM leading to a formation of reduced organic sulfur and partial changes of oxidized organic sulfur species. The original peat prior to incubation contained 70.5% reduced organic S (R-S-H, R-S-R, R-S-S-R), and 25.9% oxidized S (R-SO3, R-SO2-R, R-SO4-R), whereas the treatment with H2S or sulfate addition comprised 75.7~ 81.1% reduced organic S, and only 21.1~18.9 % oxidized S. Our results imply that that organic matter contributes to anaerobic respiration i) directly by electron accepting capacity of redox active functional groups ii) directly by oxidized organic sulfur and iii) indirectly by recycling of sulfide to maintain BSR. Moreover, investigating the stability of organic sulfur compounds in peat soil towards abiotic and biotic reduction and oxidation is essential for the understanding of environmental sulfur cycling in anaerobic systems. Keywords: Methanogenesis; Electron transfer; organic sulfur; Redox processes; Freshwater systems;