dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Coupling gross primary production and transpiration for a consistent estimate of canopy water use efficiency
VerfasserIn Marta Yebra, Albert van Dijk
Konferenz EGU General Assembly 2015
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 17 (2015)
Datensatznummer 250110389
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2015-10383.pdf
 
Zusammenfassung
Abstract: Water use efficiency (WUE, the amount of transpiration or evapotranspiration per unit gross (GPP) or net CO2 uptake) is key in all areas of plant production and forest management applications. Therefore, mutually consistent estimates of GPP and transpiration are needed to analysed WUE without introducing any artefacts that might arise by combining independently derived GPP and ET estimates. GPP and transpiration are physiologically linked at ecosystem level by the canopy conductance (Gc). Estimates of Gc can be obtained by scaling stomatal conductance (Kelliher et al. 1995) or inferred from ecosystem level measurements of gas exchange (Baldocchi et al., 2008). To derive large-scale or indeed global estimates of Gc, satellite remote sensing based methods are needed. In a previous study, we used water vapour flux estimates derived from eddy covariance flux tower measurements at 16 Fluxnet sites world-wide to develop a method to estimate Gc using MODIS reflectance observations (Yebra et al. 2013). We combined those estimates with the Penman-Monteith combination equation to derive transpiration (T). The resulting T estimates compared favourably with flux tower estimates (R2=0.82, RMSE=29.8 W m-2). Moreover, the method allowed a single parameterisation for all land cover types, which avoids artefacts resulting from land cover classification. In subsequent research (Yebra et al, in preparation) we used the same satellite-derived Gc values within a process-based but simple canopy GPP model to constrain GPP predictions. The developed model uses a ‘big-leaf’ description of the plant canopy to estimate the mean GPP flux as the lesser of a conductance-limited and radiation-limited GPP rate. The conductance-limited rate was derived assuming that transport of CO2 from the bulk air to the intercellular leaf space is limited by molecular diffusion through the stomata. The radiation-limited rate was estimated assuming that it is proportional to the absorbed photosynthetically active radiation (PAR), calculated as the product of the fraction of absorbed PAR (fPAR) and PAR flux. The proposed algorithm performs well when evaluated against flux tower GPP (R2=0.79, RMSE= 1.93 µmol m2 s-1). Here we use GPP and T estimates previously derived at the same 16 Fluxnet sites to analyse WUE. Satellite-derived WUE explained variation in (long-term average) WUE among plant functional types but evergreen needleleaf had higher WUE than predicted. The benefit of our approach is that it uses mutually consistent estimates of GPP and T to derive canopy-level WUE without any land cover classification artefacts. References Baldocchi, D. (2008). Turner Review No. 15: 'Breathing' of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems. Australian Journal of Botany, 56, 26 Kelliher, F.M., Leuning, R., Raupach, M.R., & Schulze, E.D. (1995). Maximum conductances for evaporation from global vegetation types. Agricultural and Forest Meteorology, 73, 1-16 Yebra, M., Van Dijk, A., Leuning, R., Huete, A., & Guerschman, J.P. (2013). Evaluation of optical remote sensing to estimate actual evapotranspiration and canopy conductance. Remote Sensing of Environment, 129, 250-261