dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Temporal variability of CO2 and CH4 fluxes of a rewetted fen in NE Germany
VerfasserIn Daniela Franz, Eric Larmanou, Franziska Koebsch, Jürgen Augustin, Torsten Sachs
Konferenz EGU General Assembly 2015
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 17 (2015)
Datensatznummer 250109583
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2015-9504.pdf
 
Zusammenfassung
During the last 20 years, restoring degraded peatlands became common practice in the context of climate protection, as it is expected to reduce their greenhouse gas (GHG) contribution to the atmosphere in the long term. However, suboptimal management decisions can even impair the GHG budget beyond the “restoration effect” during the first years of the rewetting. To improve future restoration management, the GHG dynamics following rewetting have to be quantified and understood. Apart from this, knowledge on the variability of the gas exchange and the respective drivers over different time scales is still lacking, though especially important for process understanding and advancement of estimations. Using the eddy covariance (EC) technique we investigate CH4 and CO2 flux dynamics between the atmosphere and a highly degraded minerotrophic fen grassland flooded in 2004/2005. The study site is located in the Peene River valley (53°52´N, 12°52´E), NE Germany. It is part of the Terrestrial Environmental Observatories Network (TERENO) spanning across Germany. In the course of flooding, a shallow lake (30-80 cm depth) developed in the centre of the rewetted area and persisted until now. The footprint of the EC measurements covers both the shallow lake and non-permanently inundated parts surrounding the lake. We will present CO2 and CH4 flux data covering one year since the system was newly established. We applied wavelet analysis and wavelet coherence to detect the multi-scale temporal variability of ecosystem gas exchange and the respective drivers by splitting time series into spectral and temporal components. Thus, transitions of ecosystem processes during the observation period are considered. Both methods are performed on continuous EC data over one year in case of CO2 and shorter measurement periods in the course of the growing season for CH4, due to data gaps. The addressed scales of temporal variation range from hour to week and season for CH4 and CO2, respectively.