dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Potential Geophysical Field Transformations and Combined 3D Modelling for Estimation the Seismic Site Effects on Example of Israel
VerfasserIn Lev Eppelbaum, Tatiana Meirova
Konferenz EGU General Assembly 2015
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 17 (2015)
Datensatznummer 250108497
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2015-11324.pdf
 
Zusammenfassung
It is well-known that the local seismic site effects may have a significant contribution to the intensity of damage and destruction (e.g., Hough et al., 1990; Regnier et al., 2000; Bonnefoy-Claudet et al., 2006; Haase et al., 2010). The thicknesses of sediments, which play a large role in amplification, usually are derived from seismic velocities. At the same time, thickness of sediments may be determined (or defined) on the basis of 3D combined gravity-magnetic modeling joined with available geological materials, seismic data and borehole section examination. Final result of such investigation is a 3D physical-geological model (PGM) reflecting main geological peculiarities of the area under study. Such a combined study needs in application of a reliable 3D mathematical algorithm of computation together with advanced methodology of 3D modeling. For this analysis the developed GSFC software was selected. The GSFC (Geological Space Field Calculation) program was developed for solving a direct 3-D gravity and magnetic prospecting problem under complex geological conditions (Khesin et al., 1996; Eppelbaum and Khesin, 2004). This program has been designed for computing the field of δg (Bouguer, free-air or observed value anomalies), δZ, δX, δY , δT , as well as second derivatives of the gravitational potential under conditions of rugged relief and inclined magnetization. The geological space can be approximated by (1) three-dimensional, (2) semi-infinite bodies and (3) those infinite along the strike closed, L.H. non-closed, R.H. on-closed and open). Geological bodies are approximated by horizontal polygonal prisms. The program has the following main advantages (besides abovementioned ones): (1) Simultaneous computing of gravity and magnetic fields; (2) Description of the terrain relief by irregularly placed characteristic points; (3) Computation of the effect of the earth-air boundary by the method of selection directly in the process of interpretation; (4) Modeling of the selected profiles flowing over rugged relief or at various arbitrary levels (using characteristic points); (5) Simultaneous modeling of several profiles; (6) Description of a large number of geological bodies and fragments. The basic algorithm realized in the GSFC program is the solution of the direct 3-D problem of gravity and magnetic prospecting for horizontal polygonal prism limited in the strike direction. In the developed algorithm integration over a volume is realized on the surface limiting the anomalous body. It is necessary to note that when we apply a series of interpreting profiles, we can compile several detailed maps of thicknesses of sedimentary or intrusive associations for the area under study. Such an experience was obtained for Carmel and Maanit areas (Eppelbaum and Katz, 2012a). Taking into account that seismic site effects must have an obvious correlation with tectonic pattern (in regional, middle and detailed scales), satellite (gravity), airborne (magnetic measurements at 1 and 5 km levels) and land (both gravity and magnetic) data were processed by the use of different methodologies. For instance, it was shown that magnetic gradient computations from airborne magnetic observations (1 km level) enable to classify the region under study to areas with thick sedimentary cover and areas with shallow intrusive rock location. Self-adjusting and adaptive filtering of gravity satellite obtained and magnetic airborne (1 and 5 km) data enabled to reveal the areas with quasi-homogeneous characteristics. Satellite derived gravity data were processed by the use of numerous algorithms: entropy, adaptive filtering, wavelet, and information approach (Eppelbaum and Katz, 2015a, 2015b, Eppelbaum et al., 2014), and strike angle and virtual deformations (Klokočník et al., 2014). Application of these methods was effective not only for tectono-geological setting sharpening, but also for calculation of such parameters as ‘dominant location of subsurface masses’, areas of ‘compression’ and ‘dilatation’. Land gravity and magnetic data were processed by the use of abovementioned algorithms including procedures of downward continuation and computation of third derivatives of gravitational potential. For this investigation was utilized the recently constructed map of the Neogene-Quaternary structural stage (indicating thicknesses of these deposits) of Israel and the eastern Mediterranean (Eppelbaum and Katz, 2014b). Results of other map compilation (Palaeogene, Late and Early Cretaceous, Jurassic and Triassic structural stages, hypsometric map of the base of the newest (Post-Jurassic) tectonic complex as well as map of Lower Mesozoic wells and outcrop locations) (Eppelbaum and Katz, 2011, 2012a, 2012b, 2014a, 2014b, 2015a, 2015b) were taken into consideration for 3D PGMs construction. Acknowledgements This research was carried out under grant No. 214-17-016 from the Ministry of Infrastructure, Energy and Water Resources of Israel. References Bonnefoy-Claudet, S., Cotton, F. and Bard, P.-Y., 2006. The nature of noise wavefield and its applications for site effects studies. A literature review. Earth Sciences Review, 79, 205-227. Eppelbaum, L. and Katz, Y., 2011. Tectonic-Geophysical Mapping of Israel and eastern Mediterranean: Implication for Hydrocarbon Prospecting. Positioning, 2, No. 1, doi: 10.4236/pos.2011.21004, 36-54. Eppelbaum, L.V., Katz, Y.I., 2012a. Mineral deposits in Israel: A contemporary view, In: (Eds. Ya’ari, A. and Zahavi, E.D.), Israel: Social, Economic and Political Developments, Nova Science Publ, NY, USA, 1-41. Eppelbaum, L.V. and Katz, Y.I., 2012b. Key Features of Seismo-Neotectonic Pattern of the Eastern Mediterranean. Izv. Acad. Sci. Azerb. Rep., Ser.: Earth Sciences, No. 3, 29-40. Eppelbaum, L.V. and Katz, Y.I., 2014a. First Paleomagnetic Map of the Easternmost Mediterranean Derived from Combined Geophysical-Geological Analysis. Trans. of the 10th EUG Meet., Geophysical Research Abstracts, Vol. 16, EGU2014-2424, Vienna, Austria, 1-5. Eppelbaum, L.V. and Katz, Y.I., 2014b. First Maps of Mesozoic and Cenozoic Structural-Sedimentation Floors of the Easternmost Mediterranean and their Relationship with the Deep Geophysical-Geological Zonation. Proceed. of the 19th Intern. Congress of Sedimentologists, Geneva, Switzerland, 1-3. Eppelbaum, L.V. and Katz, Yu.I., 2015a. Newly Developed Paleomagnetic Map of the Easternmost Mediterranean Unmasks Geodynamic History of this Region. Central European Jour. of Geosciences, 6, No. 4 (in Press). Eppelbaum, L.V. and Katz, Yu.I., 2015b. Application of Integrated Geological-Geophysical Analysis for Development of Paleomagnetic Maps of the Easternmost Mediterranean. In: (Eppelbaum L., Ed.), New Developments in Paleomagnetism Research, Nova Publisher, NY (in Press). Eppelbaum, L.V. and Khesin, B.E., 2004. Advanced 3-D modelling of gravity field unmasks reserves of a pyrite-polymetallic deposit: A case study from the Greater Caucasus. First Break, 22, No. 11, 53-56. Eppelbaum, L.V., Nikolaev, A.V. and Katz, Y.I., 2014. Space location of the Kiama paleomagnetic hyperzone of inverse polarity in the crust of the eastern Mediterranean. Doklady Earth Sciences (Springer), 457, No. 6, 710-714. Haase, J.S., Park, C.H., Nowack, R.L. and Hill, J.R., 2010. Probabilistic seismic hazard estimates incorporating site effects – An example from Indiana, U.S.A. Environmental and Engineering Geoscience, 16, No. 4, 369-388. Hough, S.E., Borcherdt, R. D., Friberg, P. A., Busby, R., Field, E. and Jacob, K. N., 1990. The role of sediment-induced amplification in the collapse of the Nimitz freeway. Nature, 344, 853-855. Khesin, B.E. Alexeyev, V.V. and Eppelbaum, L.V., 1996. Interpretation of Geophysical Fields in Complicated Environments. Kluwer Academic Publ., Ser.: Advanced Appr. in Geophysics, Dordrecht - London - Boston. Klokočník, J., Kostelecký, J., Eppelbaum, L. and Bezděk, A., 2014. Gravity Disturbances, the Marussi Tensor, Invariants and Other Functions of the Geopotential Represented by EGM 2008. Journal of Earth Science Research, 2, No. 3, 88-101. Regnier, M., Moris, S. Shapira, A., Malitzky, A. and Shorten, G., 2000. Microzonation of the expected seismic site effects across Port Vila, Vanuatu. Journal of Earthquake Engineering, 4, No. 2, 215-231.