dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Sensitivity study of the inverse problem on retrieval of the altitude profile of ozone from emission intensities of the molecular oxygen in the MLT
VerfasserIn Kseniia Martyshenko, Valentine Yankovsky
Konferenz EGU General Assembly 2015
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 17 (2015)
Datensatznummer 250107910
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2015-7632.pdf
 
Zusammenfassung
Retrieval of the ozone density altitude profile is important problem for energetics of the upper atmosphere. For comparison of methods of retrieval of altitude profiles of ozone concentration from emissions of excited oxygen molecule and atom was used a modern model of electronic-vibrational kinetics of the products of O3 and O2 photolysis YM-2011 [1]. This study uses only a part of the complete model YM-2011 related to population of levels O2(b1Σ+g, v=0-2), O2(a1Δg, v=0-5) and metastable atom O(1D). Thereby, we obtained solutions of the inverse problem of [O3] retrieval from five proxies O2(a1Δg, v = 0), O2(b1Σ+g, v = 0, 1, 2) and O (1D). Theoretically, every proposed emission of excited component could be promising sources of information about [O3], because it depends on [O3] both in production and in quenching. Detailed analysis of the solutions of the inverse problem of [O3] retrieval were conducted by the sensitivity study of these levels for variations of all model parameters at altitudes of z=40-105 km. The maximum values of sensitivity coefficient to [O3] variations have the following components: O2(b1Σ+g, v = 1), O2(a1Δg, v = 0) and O(1D). The sensitivity of all excited component to variations of ozone decreases sharply above 105 km due to a drastic fall of ozone concentration. [O2(b1Σ+g, v=2)] does not depend on ozone completely at the proposed altitudes, and [O2(b1Σ+g, v=0)] has the lowest sensitivity to variations of [O3] among rest components. Based on the results of the sensitivity study authors investigated the ozone altitude profiles retrieval accuracy taking into account uncertainties of all input parameters (solar excitation and photodissociation rates, quantum yields of products and rate constants of aeronomical reactions). Uncertainties of retrieval of altitude profiles of [O3] from [O(1D)] don’t exceed 10% in the interval 40-85 km were obtained. Profile of [O2(b1Σ+g, v=1] allows us to retrieval of [O3] with 21% uncertainty at z =40-95 km, and [O2(b1Σ+g, v=0] - 29% at altitudes up to 97 km. Uncertainties of retrieval of altitude profiles of ozone from [O2(a1Δg, v=0)] achieved 21% at altitudes of z=40-89 km, but it’s not uniform in height and in the 77-85 km don’t exceed 10%. Overall, optimal methods of retrieval of altitude profiles of ozone concentration is the observation volume emission rate of the molecule O2(b1Σ+g, v=1) in the MLT region. 1. Yankovsky V. A., Manuilova R. O., Babaev A. S., Feofilov A. G., Kutepov A. A. 2011. Model of electronic-vibrational kinetics of the O3 and O2 photolysis products in the middle atmosphere: applications to water vapor retrievals from SABER/TIMED 6.3 µm radiance measurements. International Journal of Remote Sensing, V. 33, N. 12, P. 3065-3078.