dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Forest management in Earth system modelling: a vertically discretised canopy description for ORCHIDEE and the modifications to the energy, water and carbon fluxes
VerfasserIn Kim Naudts, James Ryder, Matthew J. McGrath, Juliane Otto, Yiying Chen, Aude Valade, Valentin Bellassen, Josefine Ghattas, Vanessa Haverd, Natasha MacBean, Fabienne Maignan, Philippe Peylin, Bernard Pinty, Didier Solyga, Nicolas Vuichard, Sebastiaan Luyssaert
Konferenz EGU General Assembly 2015
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 17 (2015)
Datensatznummer 250106615
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2015-6292.pdf
 
Zusammenfassung
Since 70% of global forests are managed and forests impact the global carbon cycle and the energy exchange with the overlying atmosphere, forest management has the potential to mitigate climate change. Yet, none of the land surface models used in Earth system models, and therefore none of today's predictions of future climate, account for the interactions between climate and forest management. We addressed this gap in modelling capability by developing and parametrizing a version of the land surface model ORCHIDEE to simulate the biogeochemical and biophysical effects of forest management. The most significant changes between the new model called ORCHIDEE-CAN and the standard version of ORCHIDEE are the allometric-based allocation of carbon to leaf, root, wood, fruit and reserve pools; the transmittance, absorbance and reflectance of radiation within the canopy; and the vertical discretisation of the energy budget calculations. In addition, conceptual changes towards a better process representation occurred for the interaction of radiation with snow, the hydraulic architecture of plants, the representation of forest management and a numerical solution for the photosynthesis formalism of Farquhar, von Caemmerer and Berry. For consistency reasons, these changes were extensively linked throughout the code. Parametrization was revisited after introducing twelve new parameter sets that represent specific tree species or genera rather than a group of unrelated species, as is the case in widely used plant functional types. Performance of the new model was compared against the trunk and validated against independent spatially explicit data for basal area, tree height, canopy structure, GPP, albedo and evapotranspiration over Europe. For all tested variables ORCHIDEE-CAN outperformed the trunk regarding its ability to reproduce large-scale spatial patterns as well as their inter-annual variability over Europe. Depending on the data stream, ORCHIDEE-CAN had a 67 to 92% chance to reproduce the spatial and temporal variability of the validation data.