dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel The influence of management on GHG fluxes over Central European grasslands
VerfasserIn Lukas Hoertnagl, Michael Bahn, Matthias Barthel, Nina Buchmann, Werner Eugster, Katja Klumpp, Thomas Ladreiter-Knauss, Georg Wohlfahrt, Lutz Merbold
Konferenz EGU General Assembly 2015
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 17 (2015)
Datensatznummer 250106284
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2015-5947.pdf
 
Zusammenfassung
Agricultural management practices and land use change at grassland sites can have a strong impact on annual carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) budgets. At the same time emissions of CH4 and N2O can contribute to an increase of the global warming potential (GWP) of an ecosystem by offsetting concurrent CO2 uptake in terms of CO2-equivalents. It is therefore necessary to quantify long-term fluxes of all three compounds in order to reliably assess the climatic impact of management activities and the effectiveness of greenhouse gas (GHG) mitigation strategies. In this presentation we give an overview of the GHG exchange of eight managed Central European grassland sites along an elevation and land use intensity gradient. Fluxes of the three major GHGs CO2, CH4 and N2O were calculated using the eddy covariance or chamber technique. The investigated grasslands were different with regard to the amount of fertilizer input, frequency of cuts and grazing duration and intensity. In this presentation we focus on time periods when measurements of all three compounds were available and investigate common features among observed CH4 and N2O exchange patterns at the different grassland sites. We analyze these observations in relation to management activities and concurrently measured biotic / abiotic parameters. For field sites where long-term measurements are available we evaluate the impact of CH4 and N2O fluxes on the annual GWP.