dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Climate controls how ecosystems size the root zone storage capacity at catchment scale
VerfasserIn Hongkai Gao, Markus Hrachowitz, Stan Schymanski, Fabrizio Fenicia, Nutchanart Sriwongsitanon, Hubert Savenije
Konferenz EGU General Assembly 2015
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 17 (2015)
Datensatznummer 250106277
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2015-5941.pdf
 
Zusammenfassung
The root zone moisture storage capacity (SR) of terrestrial ecosystems is a buffer providing vegetation continuous access to water and a critical factor controlling land-atmospheric moisture exchange, hydrological response and biogeochemical processes. However, it is impossible to observe directly at catchment scale. Here, using data from 300 diverse catchments, it was tested that, treating the root zone as a reservoir, the mass curve technique (MCT), an engineering method for reservoir design, can be used to estimate catchment-scale SR from effective rainfall and plant transpiration. Supporting the initial hypothesis, it was found that MCT-derived SR coincided with model-derived estimates. These estimates of parameter SR can be used to constrain hydrological, climate and land surface models. Further, the study provides evidence that ecosystems dynamically design their root systems to bridge droughts with return periods of 10-40 years, controlled by climate and linked to aridity index, inter-storm duration, seasonality and runoff ratio. This adaptation of ecosystems to climate could be explored for prediction in ungauged basins. We found that implementing the MCT-derived SR without recalibration has dramatically increased hydrological model transferability.