dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Quantifying crystal-melt segregation in dykes
VerfasserIn Philippe Yamato, Thibault Duretz, Dave A. May, Romain Tartèse
Konferenz EGU General Assembly 2015
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 17 (2015)
Datensatznummer 250106245
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2015-5905.pdf
 
Zusammenfassung
The dynamics of magma flow is highly affected by the presence of a crystalline load. During magma ascent, it has been demonstrated that crystal-melt segregation constitutes a viable mechanism for magmatic differentiation. However, the influences of crystal volume fraction, geometry, size and density on crystal melt segregation are still not well constrained. In order to address these issues, we performed a parametric study using 2D direct numerical simulations, which model the ascension of crystal-bearing magma in a vertical dyke. Using these models, we have characterised the amount of segregation as a function of different quantities including: the crystal fraction (φ), the density contrast between crystals and melt (δρ), the size of the crystals (Ac) and their aspect ratio (R). Results show that crystal aspect ratio does not affect the segregation if R is small enough (long axis smaller than ~1/6 of the dyke width, Wd). Inertia within the system was also found not to influence crystal-melt segregation. The degree of segregation was however found to be highly dependent upon other parameters. Segregation is highest when δρ and Ac are large, and lowest for large pressure gradient (Pd) and/or large values of Wd. These four parameters can be combined into a single one, the Snumber, which can be used to quantify the segregation. Based on systematic numerical modelling and dimensional analysis, we provide a first order scaling law which allows quantification of the segregation for an arbitrary Snumber and φ, encompassing a wide range of typical parameters encountered in terrestrial magmatic systems.