dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Soluble dust as source of nutrients to the global ocean and the role of humans.
VerfasserIn Maria Kanakidou, Stelios Myriokefalitakis, Panagiota Nikolaou, Nikos Daskalakis, Christina Theodosi, Athanassios Nenes, Kostas Tsigaridis, Nikos Mihalopoulos
Konferenz EGU General Assembly 2015
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 17 (2015)
Datensatznummer 250106143
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2015-5796.pdf
 
Zusammenfassung
Atmospheric deposition of trace constituents, both of natural and anthropogenic origin, can act as a nutrient source into the open ocean and affect marine ecosystem functioning and subsequently the exchange of CO2 between the atmosphere and the global ocean. Dust is known as a major source of nutrients (Fe and P) into the atmosphere, but only a fraction of these nutrients is released in soluble form that can be assimilated by the ecosystems. Dust is also known to enhance N deposition by interacting with anthropogenic pollutants and neutralisation of part of the acidity of the atmosphere by crustal alkaline species. The link between the soluble iron (Fe) and phosphorus (P) atmospheric deposition and atmospheric acidity, as well as anthropogenic sources, is investigated. The global atmospheric Fe, P and N cycle are parameterized in the global 3-D chemical transport model TM4-ECPL. Both primary emissions of total and soluble Fe and P associated with dust and combustion processes are taken into account, as well as inorganic and organic N emissions. The impact of atmospheric acidity on nutrient solubility is parameterised based on experimental findings. The model results are evaluated by comparison with available observations. The impact of air-quality changes on soluble nutrient deposition is studied by performing sensitivity simulations using preindustrial, present and future emission scenarios. The response of the chemical composition of nutrient-containing aerosols to environmental changes is demonstrated and quantified. This work has been supported by ARISTEIA – PANOPLY grant co-financed by European Union (ESF) and Greek national funds NSRF.