dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Towards stochastically downscaled precipitation in the Tropics based on a robust 1DD combined satellite product and a high resolution IR-based rain mask
VerfasserIn Clement Guilloteau, Rémy Roca, Marielle Gosset
Konferenz EGU General Assembly 2015
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 17 (2015)
Datensatznummer 250106082
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2015-5735.pdf
 
Zusammenfassung
In the Tropics where the ground-based rain gauges network is very sparse, satellite rainfall estimates are becoming a compulsory source of information for various applications: hydrological modeling, water resources management or vegetation-monitoring. The tropical Tropical Amount of Precipitation with Estimate of Error (TAPEER) algorithm, developed within the framework of Megha-Tropiques satellite mission is a robust estimate of surface rainfall accumulations at the daily, one degree resolution. TAPEER validation in West Africa has proven its accuracy. Nevertheless applications that involve non-linear processes (such as surface runoff) require finer space / time resolution than one degree one day, or at least the statistical characterization of the sub-grid rainfall variability. TAPEER is based on a Universally Adjusted Global Precipitation Index (UAGPI) technique. The one degree, one day estimation relies on the combination of observations from microwave radiometers embarked on the 7 platforms forming the GPM constellation of low earth orbit satellites together with geostationary infra-red (GEO-IR) imagery. TAPEER provides as an intermediate product a high-resolution rain-mask based on the GEO-IR information (2.8 km, 15 min in Africa). The main question of this work is, how to use this high-resolution mask information as a constraint for downscaling ? This work first presents the multi-scale evaluation of TAPEER’s rain detection mask against ground X-band polarimetric radar data and TRMM precipitation radar data in West Africa, through wavelet transform. Other algorithms (climate prediction center morphing technique CMORPH, global satellite mapping of precipitation GSMaP, multi-sensor precipitation estimate MPE) detection capabilities are also evaluated. Spatio-temporal wavelet filtering of the detection mask is then used to compute precipitation probability at the GEO-IR resolution. The wavelet tool is finally used to stochastically generate rain / no rain field ensemble consistent with the original TAPEER estimation. This binary mask generation is the first step for the generation of quantitative rain fields ensemble at GEO-IR resolution.