dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Estimation of NOx emissions from NO2 hotspots in polluted background using satellite observations
VerfasserIn Fei Liu, Steffen Beirle, Qiang Zhang, Thomas Wagner
Konferenz EGU General Assembly 2015
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 17 (2015)
Datensatznummer 250105849
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2015-5437.pdf
 
Zusammenfassung
Satellite observations have been widely used to study NOx emissions from power plants and cities, which are major NOx sources with large impacts on human health and climate. The quantification of NOx emissions from measured column densities of NO2 requires information on the NOx lifetime, which is typically gained from atmospheric chemistry models. But some recent studies determined the NOx lifetime from the satellite observations as well by analyzing the downwind plume evolution; however, this approach was so far only applied for strong isolated “point sources” located in clean background, like Riyadh in Saudi Arabia. Here we present a modified method for the quantification of NOx emissions and corresponding atmospheric lifetimes based on OMI observations of NO2, together with ECMWF wind fields, but without further model input, for hot spots located in polluted background. We use the observed NO2 patterns under calm wind conditions as proxy for the spatial patterns of NOx emissions; by this approach, even complex source distributions can be treated realistically. From the change of the spatial patterns of NO2 at larger wind speeds (separately for different wind directions), the effective atmospheric lifetime is fitted. Emissions are derived from integrated NO2 columns above background by division by the corresponding lifetime. NOx lifetimes and emissions are estimated for 19 power plants and 50 cities across China and the US. The derived lifetimes are 3.3 ± 1.2 hours on average with extreme values of 0.9 to 7.7 hours. The resulting very short lifetimes for mountainous sites have been found to be uncertain due to the potentially inaccurate ECMWF wind data in mountainous regions. The derived NOx emissions show overall good agreement with bottom-up inventories.