dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Spatial and Temporal Variability of CO2 and CH4 Concentrations in the Atmospheric Surface Layer over West Siberia
VerfasserIn Boris D. Belan, Toshinobu Machida, Motoki Sasakawa, Denis K. Davydov, Alexander V. Fofonov, Oleg A. Krasnov, Shamil Maksyutov, Mikhail Yu. Arshinov
Konferenz EGU General Assembly 2015
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 17 (2015)
Datensatznummer 250105447
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2015-4971.pdf
 
Zusammenfassung
The investigation of greenhouse gas behavior in the atmosphere plays a key role in predicting the global changes of Earth’s climate. In this connection, of particular importance is the study of the distribution of sources/sinks of trace gases in the atmospheric surface layer over the different regions of the globe. In order to fill a gap in the data on greenhouse gas concentrations in Russia, National Institute for Environmental Studies (NIES, Japan) and Institute of Atmospheric Optics (IAO SB RAS, Russia) established a network for GHG monitoring (JR-STATION, Japan-Russia Siberian Tall Tower Inland Observation Network). Gas analyzers and meteorological sensors were mounted at radio relay towers located in different regions of West Siberia. The checking equipment was placed in containers at the tower base. In the containers, the climatic parameters optimal for gas analyzer operation were maintained. The work on the network development started in 2001. Since at each of the sites the measurement duration could be different, in this paper we present the data of the greenhouse gas monitoring for eight sites which give the primary idea on the spatial distribution and temporal dynamics of CO2 and CH4 in the atmospheric surface layer over West Siberia. The analysis of the data showed that the average increase in concentration of carbon dioxide by results of our measurements in this territory increases within 1.95 – 2.53 ppm/year, depending on the area. The analysis of long-term data testifies about existence of growth of concentration of methane within 3.2 – 7.2 ppb / year. The presence of a distributed network of the sites operating in the monitoring regime makes it possible not only to investigate the temporal dynamics of CO2 and CH4 at each site and to determine the spatial differences between the concentrations by comparing the data, but also to plot the distribution charts for different moments of time. This work was supported by the Global Environment Research Account for National Institutes of the Ministry of the Environment (Japan), the Branch of Geology, Geophysics and Mining Sciences of RAS (ProgramÂNo. 5); State contracts of the Ministry of Education and Science of Russia No. 14.604.21.0100, (RFMTFIBBB210290) and No. 14.613.21.0013 (RFMEFI61314X0013); Interdisciplinary integration projects of the Siberian Branch of the Russian Academy of Science No. 35, No. 70 and No. 131; and Russian Foundation for Basic Research (grants No. 14-05-00526 and 14-05-00590).