dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel The interaction between Gravity Waves and Solar Tides: results from 4D Ray Tracing coupled to a Linear Tidal Model
VerfasserIn Bruno Ribstein, Ulrich Achatz, Fabian Senf
Konferenz EGU General Assembly 2015
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 17 (2015)
Datensatznummer 250105435
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2015-4959.pdf
 
Zusammenfassung
Internal gravity waves contribute to an important part in the variability of the Stratosphere - Mesosphere - lower - Thermosphere. Numerous General Circulation Model do not present (for exemple) a Quasi-biennale Oscillation. Moreover, Internal gravity waves parameterizations often neglect time and horizontal dependence of the background flow (“column approximation”). Interactions between internal gravity waves and large scale flow, specially Solar tide waves, are studied here. Thermally driven global scaled waves, Solar tides describe the large-scale modulation (at sub-daily period) of all middle atmosphere fields. Gravity waves propagate in a time and spatially varying background flow, composed by a climatological mean, stationary planetary waves and diurnal Solar tides. Global three-dimensional propagation of internal gravity waves is performed by a new W. K. B. gravity wave model (ray tracer scheme), where waves propagate in position-wavenumber phase-space in order to prevent the crossing of rays. Propagation of Solar tides is modeled by linearising a General Circulation Model over a climatological mean and a stationnary planetary waves reference. Gravity wave deposition of momentum and buoyancy are calculated. Characterizing the daily evolution, Rayleigh-friction and temperature-relaxation coefficients are calculated. They approximately describe the internal gravity wave forcing on the diurnal Solar tides propagation and are so used for it. The extracted diurnal Solar tides are then used for a new computation of the gravity wave fluxes. This is iterated a few times to obtain a converged result on gravity wave deposition and on tidal field. Internal gravity waves are shown to influence both Solar tides amplitude and phase. Seasonal cycle of migrating and non-migrating tidal components is studied, as it is the seasonal cycle of gravity wave deposition. Gravity wave deposition and tidal fields are also obtained under the “column approximation”. They show a clear rise in gravity wave deposition. _____________________________________________________ Key words: Middle-Atmosphere dynamics, Solar Tides, Internal Gravity Waves _____________________________________________________