dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Can Canopy Uptake Influence Nitrogen Acquisition and Allocation by Trees?
VerfasserIn Richard Nair, Mike Perks, Maurizio Mencuccini
Konferenz EGU General Assembly 2015
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 17 (2015)
Datensatznummer 250105333
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2015-4851.pdf
 
Zusammenfassung
Nitrogen (N) fertilization due to atmospheric deposition of anthropogenic nitrogen (NDEP) may explain some of the net carbon (C) sink (0.6-0.7 Pg y-1) in temperate forests, but estimates of the additional C uptake due to atmospheric N additions (δCδN) can vary by over an order of magnitude (~ 5 to 200 δCδN). High estimates from several recent studies [e.g. Magnani (2007), Nature 447 848-850], deriving δCδN from regional correlations between NDEP and measures of C uptake (such as eddy covariance -derived net ecosystem production, or forest inventory data) contradict estimates from other studies of 15N tracer applications added as fertilizer to the forest floor. A strong δCδN effect requires nitrogen to be efficiently acquired by trees and allocated to high C:N, long-lived woody tissues, but these isotope experiments typically report relatively little (~ 20 %) of 15N added is found above-ground, with < 5 % of the total 15N applied found in wood. Consequently the high correlation-derived δCδN estimates are often attributed to co-variation with other factors across the range of sites investigated. However 15N-fertilization treatments often impose considerably higher total N loads than ambient NDEP and almost exclusively only apply mineral 15N treatments to the soil, often in a limited number of treatment events over relatively short periods of time. Excessive N deposition loads can induce negative physiological effects and limit the resulting δCδN observed, and applying treatments to the soil may ignore the importance of canopy nitrogen uptake in overall forest nutrition. As canopies can directly take up nitrogen, the chronic, (relatively) low levels of ambient NDEP inputs from pollution may be acquired without some of the effects of heavy N loads, obtaining this N before it reaches the soil, and allowing canopies to substitute for, or supplement, edaphic N nutrition. The strength of this effect depends on how much N uptake can occur across the canopy under field conditions, and if this extra N supplies growth in woody tissues such as the stem, as well as the canopy. To test these ideas, we applied a low (~ 2.5 % above ambient NDEP) 15N treatment to Picea sitchensis saplings, targeting the soil or the canopy in monthly fertilizations for 16 months, and investigating 15N return in different age classes of biomass and over time. While soil-targeted deposition treatments agreed well with existing knowledge of N partitioning from this source, we could infer 2-3 times more 15N was retained above-ground in canopy-targeted treatments, including a relative increase in 15N allocation to stem and woody biomass when compared to the soil treatment. These results suggest that existing forest 15N-fertilization experiments could under-estimate the overall δCδN effect of atmospheric deposition.