dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Cryogenic cave carbonates as an archive of Late Pleistocene permafrost in the Ural Mountains: preliminary results
VerfasserIn Yuri Dublyansky, Olga Kadebskaya, Hai Cheng, Mark Luetscher, Christoph Spötl
Konferenz EGU General Assembly 2015
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 17 (2015)
Datensatznummer 250104667
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2015-4095.pdf
 
Zusammenfassung
A specific type of cave deposits, cryogenic cave carbonates (CCCs), was discovered in the late 1980s in several caves of Central Europe. Unlike “common” speleothems that form primarily due to degassing of CO2 from Ca2+ and HCO3- -rich waters, CCCs form by freezing-induced segregation (Žák et al., 2004). The formation of CCCs, hence, requires the presence of both liquid water and freezing temperatures. The latter combination may occur in caves in two situations: (1) freezing-thawing cycles in cave entrance zones; and (2) degrading permafrost conditions, when the active layer reaches the cave ceiling, whilst the deeper parts of the cave remain frozen. The latter situation is associated with a particular type of CCCs, which can be used as a marker for permafrost conditions. Because cave carbonates can be accurately dated using the U/Th method, CCCs may be used to identify events of (degrading) palaeo-permafrost conditions. In this study, CCCs were identified and sampled in four caves, located along a 1000 km-long transect from the northern to the southern Ural Associating the CCCs to permafrost conditions was possible on the basis of field observations (locations deep inside the cave, far from entrance zones) and stable isotope properties (strongly depleted δ18O values, inverse correlation between δ18O and δ13C). Chaikovskiy et al. (2014) reported five U/Th analyses of CCC from three caves: 16.7 ka and 104.8 ka (Divja Cave, northern Ural); and 13.4 ka, 86.5 ka and 125.3 ka (Rossijskaya and Usvinskaya Caves, central Ural). In this study we report 25 additional U/Th ages from northern and central Ural, as well as the first CCC age from southern Ural (Shulgan-Tash Cave). Most of the younger ages (