dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel High-Precise Gravity Observations at Archaeological Sites: How We Can Improve the Interpretation Effectiveness and Reliability?
VerfasserIn Lev Eppelbaum
Konferenz EGU General Assembly 2015
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 17 (2015)
Datensatznummer 250103598
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2015-3012.pdf
 
Zusammenfassung
Microgravity investigations are comparatively rarely used for searching of hidden ancient targets (e.g., Eppelbaum, 2013). It is caused mainly by small geometric size of the desired archaeological objects and various types of noise complicating the observed useful signal. At the same time, development of modern generation of field gravimetric equipment allows to register microGal (10-8 m/s2) anomalies that offer a new challenge in this direction. Correspondingly, an accuracy of gravity variometers (gradientometers) is also sharply increased. How we can improve the interpretation effectiveness and reliability? Undoubtedly, it must be a multi-stage process. I believe that we must begin since nonconventional methodologies for reducing topographic effect and terrain correction computation. Topographic effect reducing The possibilities of reducing topographic effects by grouping the points of additional gravimetric observations around the central point located on the survey network were demonstrated in (Khesin et al., 1996). A group of 4 to 8 additional points is located above and below along the relief approximately symmetrically and equidistant from the central point. The topographic effect is reduced to the obtained difference between the gravity field in the center of the group and its mean value for the whole group. Application of this methodology in the gold-pyrite deposit Gyzyl-Bulakh (Lesser Caucasus, western Azerbaijan) indicated its effectiveness. Computation of terrain correction Some geophysicists compare the new ideas in the field of terrain correction (TC) in gravimetry with the “perpetuum mobile” invention. However, when we speak about very detailed gravity observations, the problem of most optimal computation of surrounding relief influence is of a great importance. Let us will consider two approaches applied earlier in ore geophysics. First approach A first method was applied in the Gyzyl-Bulakh gold-pyrite deposit situated in the Mekhmana ore region of the Lesser Caucasus (western Azerbaijan) under conditions of rugged relief and complex geology. This deposit is well investigated by mining and drilling operations and therefore was used as a reference field polygon for testing this approach. A special scheme for obtaining the Bouguer anomalies has been employed to suppress the terrain relief effects dampening the anomaly effects from the objects of prospecting. The scheme is based on calculating the difference between the free-air anomaly and the gravity field determined from a 3D model of a uniform medium with a real topography. 3-D terrain relief model with an interval of its description of 80 km (the investigated 6 profiles of 800 m length are in the center of this interval) was employed to compute (by the use of GSFC software (Khesin et al., 1996)) the gravitational effect of the medium (Ïă = 2670 kg/m3). With applying such a scheme the Bouguer anomalies were obtained with accuracy in two times higher than that of TC received by the conventional methods. As a result, on the basis of the improved Bouguer gravity with the precise TC data, the geological structure of the deposit was defined (Khesin et al., 1996). Second approach Second approach was employed at the complex Katekh pyrite-polymetallic deposit, which is located at the southern slope of the Greater Caucasus (northern Azerbaijan). The main peculiarities of this area are very rugged topography of SW-NE trend, complex geology and severe tectonics. Despite the availability of conventional δgB (TC far zones were computed up to 200 km), for the enhanced calculation of surrounding terrain topography a digital terrain relief model was created (Eppelbaum and Khesin, 2004). The SW-NE regional topography trend in the area of the Katekh deposit occurrence was computed as a rectangular digital terrain relief model (DTRM) of 20 km long and 600 m wide (our interpretation profile with a length of 800 m was located in the geometrical center of the DTRM). As a whole, about 1000 characteristic points were used to describe the DTRM (most frequently points were focused in the center of the DTRM and more rarely – on the margins). Thus, in the interactive 3D δgB modeling (by the use of GSFC software) was computed effect not only from geological bodies occurring in this area, but also from surrounding DTRM. In the issue of this scheme application, two new ore bodies were discovered. Quantitative analysis of gravity anomalies The trivial formulas of quantitative analysis (based on simple relationships between the gravity field intensity and geometrical parameters of the anomalous body) are widely presented in the geophysical literature (e.g., Telford et al., 1993; Parasnis, 1997). However, absence of reliable information about the normal gravity field in the studied areas strongly limits practical application of these methods. Gravity field intensity F is expressed as F = - gradW, (1) where W is the gravity potential. For anomalous magnetic field Ua we can write (when magnetic susceptibility ≈¤ 0.1 SI unit) (Khesin et al., 1996): Ua = - gradV, (2) where V represents the magnetic potential. Let’s consider analytical expressions of some typical models employed in magnetic and gravity fields (Table 1). Table 1. Comparison of some analytical expressions for magnetic and gravity fields Field Analytical expression MagneticThin bed (TB) z Zv = 2I2b–2–-2 x + z (3) Point source (rod) mz Zv = –––-3/ˆ•2 (x2 + z2) (4) Gravity Horizontal Circular Cylinder (HCC) –z–– δg = 2GÏă x2 + z2 (5) Sphere ––z––- δg = GM (x2 + z2)3/ˆ•2 (6)