dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel 2H/1H composition of soil n-alkanes along two altitudinal transects in East Africa
VerfasserIn Sarah Coffinet, Arnaud Huguet, Nikolai Pedentchouk, Christine Omuombo, David Williamson, Laurent Bergonzini, Thomas Wagner, Sylvie Derenne
Konferenz EGU General Assembly 2015
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 17 (2015)
Datensatznummer 250102632
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2015-2022.pdf
 
Zusammenfassung
Long chains n-alkanes are components of terrestrial plant leaf waxes that are ubiquitously found in geological archives. They have been extensively used to track environmental and ecological variations in the past, notably changes in vegetation communities. Recent analytical developments led to the possibility of measuring their deuterium to hydrogen isotopic ratio (δ2Hwax). This parameter is suggested to be linked to hydrogen isotope ratio of precipitations (δ2Hp). In 2008, Jia et al. proposed to use soil derived δ2 Hwax as a paleoelevation proxy since precipitations are known to get more depleted in deuterium with altitude. They found a linear correlation (R2 0.73) between δ2Hwax in surface soils and altitude along Mt. Gongga (China). Since then, the correlation between δ2Hwax and δ2Hp was shown for several other altitudinal transects. Contrary to these previous observations, however, no trend with altitude was observed in East Africa along an altitudinal gradient in Mt. Kilimanjaro (North eastern, Tanzania, Peterse et al., 2009 and Zech et al., 2014). What is the reason for this absence of trend? Is it because of a difference between African and Asian soils? Or is it specific to Mt. Kilimanjaro? To get an insight into this problem, we determined δ2Hwax in 41 surface soils sampled along two altitudinal transects: from 500 to 2800 m in Mt. Rungwe (South-western Tanzania) and from 1897 to 3268 m in Mt. Kenya (Central Kenya). The goal of the study was to further investigate the conditions of applicability of this proxy in East Africa. A correlation between soil derived δ2Hwax and altitude was observed along Mt. Kenya (δ2Hwax=20.2*ALT-88.0, R2=0.51) but not along Mt. Rungwe - similarly to Mt. Kilimanjaro (Peterse et al., 2009; Zech et al., 2014). This contrast between Mt. Kenya on one hand and Mts. Rungwe and Kilimanjaro on the other hand may be explained by differences in topography. These results highlight the complexity of the signal recorded by δ2H, and particularly soil δ2Hwax with regard to its use as a paleoelevation proxy. References: Jia, G., et al. 2008, Geochimica et Cosmochimica Acta 72. Peterse, F., 2009, Biogeosciences 6. Zech, M. et al., 2014, Biogeosciences Discussions 11.