dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Interpretation of fluid inclusions in quartz deformed by weak ductile shearing: reconstruction of differential stress magnitudes and pre-deformation fluid properties
VerfasserIn Alexandre Tarantola, Larryn W. Diamond
Konferenz EGU General Assembly 2015
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 17 (2015)
Datensatznummer 250102465
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2015-1781.pdf
 
Zusammenfassung
A well developed theoretical framework is available in which paleofluid properties, such as chemical composition and density, can be reconstructed from fluid inclusions in minerals that have undergone no ductile deformation. Fluid inclusions are known to reequilibrate during strong post-entrapment changes in hydrostatic confining pressure (e.g. Sterner and Bodnar 1989). The present study extends this framework to encompass fluid inclusions hosted by quartz that has undergone weak ductile deformation following fluid entrapment. Recent piston-cylinder experiments (Griggs apparatus) made on single quartz crystals have shown that such deformation causes inclusions to become dismembered into clusters of irregularly shaped relict inclusions surrounded by planar arrays of tiny, new-formed (neonate) inclusions (Diamond et al. 2010; Tarantola et al. 2010, 2012). Comparison of the experimental samples with a naturally sheared quartz vein from Grimsel Pass, Central Alps, Switzerland, reveals striking similarities. This strong concordance justifies applying the experimentally derived rules of fluid inclusion behaviour to nature. Thus, planar arrays of dismembered inclusions defining cleavage planes in quartz may be taken as diagnostic of small amounts of intracrystalline strain. Deformed inclusions preserve their pre-deformation concentration ratios of gases to electrolytes, but their H2O contents typically have changed. Morphologically intact inclusions, in contrast, preserve the pre-deformation composition and density of their originally trapped fluid. The orientation of the maximum principal compressive stress (σ1) at the time of shear deformation can be derived from the pole to the cleavage plane within which the dismembered inclusions are aligned. Finally, the density of neonate inclusions is commensurate with the pressure value of σ1 at the temperature and time of deformation. This last rule offers a means to estimate magnitudes of shear stresses from fluid inclusion studies. Application of this new paleopiezometer approach to the Grimsel vein yields a differential stress (σ1 - σ3) of ~300 MPa at 390 ± 30 °C during late Miocene NNW-SSE orogenic shortening and regional uplift of the Aar Massif. This differential stress resulted in strain-hardening of the quartz at very low total strain (<5%) while nearby shear zones were accommodating significant displacements. Further implementation of these experimentally derived rules should provide new insight into processes of fluid-rock interaction in the ductile regime within the Earth's crust. Diamond, L.W., Tarantola, A., Stünitz, H., 2010. Modification of fluid inclusions in quartz by deviatoric stress II: Experimentally induced changes in inclusion volume and composition. Contrib. Mineral. Petrol. 160, 845-864. Sterner, S.M. and Bodnar, R.J., 1989. Synthetic fluid inclusions–VII. Re-equilibration of fluid inclusions in quartz during laboratory-simulated metamorphic burial and uplift. J. Metamorph. Geol., 7, 243¬–260. Tarantola, A., Diamond, L.W., Stünitz, H., 2010. Modification of fluid inclusions in quartz by deviatoric stress. I: Experimentally induced changes in inclusion shapes and microstructures. Contrib. Mineral. Petrol. 160, 825-843. Tarantola, A., Diamond, L.W., Stünitz, H., Thust, A., Pec, M., 2012. Modification of fluid inclusions in quartz by deviatoric stress. III: Influence of principal stresses on inclusion density and orientation. Contrib. Mineral. Petrol. 164, 527-550.