dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Combined Multipoint Remote and In Situ Observations of the Asymmetric Evolution of a Fast Coronal Mass Ejection
VerfasserIn Tanja Rollett, Christian Möstl, Manuela Temmer, Rudy A. Frahm, Jackie A. Davies, Astrid M. Veronig, Bojan Vršnak, Ute V. Amerstorfer, Charles J. Farrugia, Tomislav Zic, Tielong Zhang
Konferenz EGU General Assembly 2015
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 17 (2015)
Datensatznummer 250101978
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2015-1464.pdf
 
Zusammenfassung
A significant number of in situ detections and remote observations have allowed us to strongly constrain the shape of the fast coronal mass ejection (CME) of 7 March 2012 during its evolution through interplanetary space. The CME was imaged by both STEREO spacecraft and detected in situ by MESSENGER, Venus Express, Wind and Mars Express. Applying the novel constrained self-similar expansion method, which combines observations from STEREO's heliospheric imaging facilities with the four in situ detections, we derived different kinematical profiles for two different segments of the same CME. For the Venus- (and Mercury-) directed segment we found a gradual deceleration while the Earth- (and Mars-) directed part was decelerated abruptly close to the Sun. In order to study the background solar wind conditions we used a drag-based model, which revealed a comparatively small drag-force acting on the Venus-directed CME segment possibly caused by a preceding CME that cleared the way for the CME under study. The Earth-directed segment may have also been affected by a preceding CME. Here, we found different solar wind conditions along the CME path. A high drag-parameter below 35 solar radii suggests a high drag-force acting against the CME propagation, causing a strong deceleration. Subsequently, this part of the CME propagated with an almost constant speed. The resulting deformation of the overall CME shape underlines the importance of using stereoscopic observations for being able to reduce the arrival time error in space weather forecasting.