dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel 3d morphometric analysis of lunar impact craters: a tool for degradation estimates and interpretation of maria stratigraphy
VerfasserIn Valerio Vivaldi, Matteo Massironi, Andrea Ninfo, Gabriele Cremonese
Konferenz EGU General Assembly 2015
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 17 (2015)
Datensatznummer 250101959
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2015-1231.pdf
 
Zusammenfassung
In this study we have applied 3D morphometric analysis of impact craters on the Moon by means of high resolution DTMs derived from LROC (Lunar Reconnaissance Orbiter Camera) NAC (Narrow Angle Camera) (0.5 to 1.5 m/pixel). The objective is twofold: i) evaluating crater degradation and ii) exploring the potential of this approach for Maria stratigraphic interpretation. In relation to the first objective we have considered several craters with different diameters representative of the four classes of degradation being C1 the freshest and C4 the most degraded ones (Arthur et al., 1963; Wilhelms, 1987). DTMs of these craters were elaborated according to a multiscalar approach (Wood, 1996) by testing different ranges of kernel sizes (e.g. 15-35-50-75-100), in order to retrieve morphometric variables such as slope, curvatures and openness. In particular, curvatures were calculated along different planes (e.g. profile curvature and plan curvature) and used to characterize the different sectors of a crater (rim crest, floor, internal slope and related boundaries) enabling us to evaluate its degradation. The gradient of the internal slope of different craters representative of the four classes shows a decrease of the slope mean value from C1 to C4 in relation to crater age and diameter. Indeed degradation is influenced by gravitational processes (landslides, dry flows), as well as space weathering that induces both smoothing effects on the morphologies and infilling processes within the crater, with the main results of lowering and enlarging the rim crest, and shallowing the crater depth. As far as the stratigraphic application is concerned, morphometric analysis was applied to recognize morphologic features within some simple craters, in order to understand the stratigraphic relationships among different lava layers within Mare Serenitatis. A clear-cut rheological boundary at a depth of 200 m within the small fresh Linnè crater (diameter: 2.22 km), firstly hypothesized through numerical investigation (Martellato et al.), has been well identified as a bland morphological step on the inner crater scarp by using slope and curvature maps derived from a NAC DTM. In addition to this main morphological feature, other minor layers have been detected allowing to consider impact crater as stratigraphic logs to perform an interpretative subsurface map of a selected sector of Mare Serenitatis. References ARTHUR, D.W.G., AGNIERAY, A.P., HORVATH, R.A., WOOD, C.A. , CHAPMAN, C.R., 1963. The system of lunar craters. Quadrant I. Comm. Lunar Planet. Lab. 2, #30. MARTELLATO E., ROBINSON M.S., CREMONESE G. & LUCCHETTI A., 2013. Numerical modeling of Linné crater. EPSC Abstracts Vol. 8, EPSC2013-649. WILHELMS, D., 1987. The Geologic History of the Moon. US Geological Survey Professional Paper 1348. WOOD, J., 1996. The geomorphological characterization of digital elevation models. PhD Thesis, University of Leicester, UK.