dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Serpentinite Carbonation in the Pollino Massif (southern Italy) for CO2 Sequestration
VerfasserIn Maria Carmela Dichicco, Giovanni Mongelli, Michele Paternoster, Giovanna Rizzo
Konferenz EGU General Assembly 2015
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 17 (2015)
Datensatznummer 250101311
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2015-426.pdf
 
Zusammenfassung
Anthropogenic gas emissions are projected to change future climates with potentially nontrivial impacts (Keller et al., 2008 and references therein) and the impacts of the increased CO2 concentration are, among others, the greenhouse effect, the acidification of the surface of the ocean and the fertilization of ecosystems (e.g. Huijgen and Comans, 2003). Geologic Sequestration into subsurface rock formations for long-term storage is part of a process frequently referred to as “carbon capture and storage” or CCS. A major strategy for the in situ geological sequestration of CO2 involves the reaction of CO2 with Mg-silicates, especially in the form of serpentinites, which are rocks: i) relatively abundant and widely distributed in the Earth’s crust, and ii) thermodynamically convenient for the formation of Mg-carbonates (e.g., Brown et al., 2011). In nature, carbonate minerals can form during serpentinization or during hydrothermal carbonation and weathering of serpentinites whereas industrial mineral carbonation processes are commonly represented by the reaction of olivine or serpentine with CO2 to form magnesite + quartz ± H2O (Power et al., 2013). Mineral carbonation occurs naturally in the subsurface as a result of fluid–rock interactions within serpentinite, which occur during serpentinization and carbonate alteration. In situ carbonation aims to promote these reactions by injecting CO2 into porous, subsurface geological formations, such as serpentinite-hosted aquifers. In the northern sector of the Pollino Massif (southern Italy) extensively occur serpentinites (Sansone et. al., 2012) and serpentinite-hosted aquifers (Margiotta et al., 2012); both serpentinites and serpentinite-hosted aquifers are the subject of a comprehensive project devoted to their possible use for in situ geological sequestration of CO2. The serpentinites derived from a lherzolitic and subordinately harzburgitic mantle, and are within tectonic slices in association with metadolerite dykes and medium to high-grade metamorphic rocks. Primary mantle minerals are olivine, clinopyroxene, orthopyroxene, and spinel whereas serpentine, magnetite, chlorite, and amphibole are pseudomorphic minerals. Olivine is replaced by serpentine forming a mesh texture and orthopyroxene is mostly altered to bastite. Water chemistry indicates serpentinites interact with meteoric water producing a Mg-HCO3 type water in a system open to CO2. Brown Jr., G.E., Calas, G., (2011) - Environmental mineralogy – understanding element behavior in ecosystems. Comptes Rendus Geoscience 343, 90–112. Huijgen W.JJ., and Comans R.N.J., (2003) – Carbon dioxide sequestrationby mineral carbonation. Report Number ECN-C-03-016, Energy research Centre of the Netherlands (ECN), Petten, the Netherlands. Keller PJ, Schmidt AD, Wittbrodt J, Stelzer EHK. (2008) - Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 322: 1065–1069. Margiotta, S., Mongelli, G., Summa, V., Paternoster, M., Fiore S. (2012) - Trace element distribution and Cr(VI) speciation in Ca-HCO3 and Mg-HCO3 spring waters from the northern sector of the Pollino massif, southern Italy. Journal of Geochemical Exploration. Power I.M., Wilson S.A., Dipple G.M. (2013) - Serpentinite Carbonation for CO2 Sequestration. Elements, 9, 115–121. Sansone M.T.C., Prosser G., Rizzo G., Tartarotti P. (2012) – Spinel-peridotites of the Frido Unit ophiolites: evidence for oceanic evolution. Periodico di Mineralogia. 81, 35-59. 10.2451/2012PM0003