dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Advances in modelling the coevolving soils, landforms and vegetation in semiarid regions: a multidisciplinary approach.
VerfasserIn Patricia M. Saco, Mariano Moreno-de las Heras, Garry R. Willgoose
Konferenz EGU General Assembly 2014
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 16 (2014)
Datensatznummer 250100065
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2014-15946.pdf
 
Zusammenfassung
Semiarid landscapes exhibit highly nonlinear interactions between coevolving physical and biological processes. Coevolution in these systems leads to the emergence of remarkable soil, landform and vegetation patterns. Growing concern over ecosystem resilience to climate and land use perturbations that could result in irreversible degradation imposes a pressing need for research, aiming at elucidating the processes, feedbacks, and dynamics leading to these coevolving patterns. This is particularly important since degradation in drylands has been frequently linked to feedback effects between soils, biota and erosion processes. In many dryland regions, feedbacks are responsible for the emergence of areas with low infiltration in unvegetated soil patches (due to surface crusting) and high infiltration rates in the vegetated soil patches (due to improved soil aggregation and macroporosity). This variable infiltration field gives rise to runoff–runon redistribution which determines areas of soil erosion and deposition. We have combined a coupled landform-soil-vegetation model with remote sensing and field data to capture these feedbacks and improve our knowledge of these coevolving biotic-abiotic processes. We discuss and present results showing that the dynamics of the individual processes and their response to climatic and anthropic disturbances cannot be fully understood or predicted if nonlinear feedbacks and coevolution are not considered. Implications for management and restoration efforts are illustrated using data and observations from agricultural sites in central Australia and reclaimed mining sites in Spain.