dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel On the influence of advection on the “Guardia dei Lombardi" geothermal field
VerfasserIn Anozie Ebigbo, Jan Niederau, Gabriele Marquart, Gianluca Gola, Barbara Inversi, Davide Scrocca, Adele Manzella, Giordano Montegrossi
Konferenz EGU General Assembly 2014
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 16 (2014)
Datensatznummer 250099166
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2014-14919.pdf
 
Zusammenfassung
Due to local specific-heat-flow maxima of up to 90 mW/m2 and temperatures of about 100 °C at less than 1.7 km depth, a southern Italian (Province of Avelino) carbonate reservoir is being explored as a medium-enthalpy geothermal resource. Hydrocarbon exploration wells and several seismic profiles within the chosen area (with dimensions of 43 x 28 km) provide the basis for a complex, three-dimensional geological model. The reservoir is faulted, anticlinal in structure, and overlain by dense, partly clay-rich sedimentary layers. A hydraulic and thermal characterisation of the geological units is possible through a combination of laboratory measurements, literature sources, and well log data. Under the assumption of purely conductive heat transport, the specific heat flow at the bottom of the reservoir (at 6 km depth) can be estimated using temperature data from several boreholes in the region to 67 mW/m2 . The goal of this study is the investigation of advective flow and the evaluation of its influence on the temperature distribution in the reservoir. First hydrothermal simulation models show a complicated flow structure in the anticlinal reservoir. But an inversion for constant reservoir permeability based on the borehole-temperature observations results in a relatively low value of 0.5 to 1 mD. However, pointwise comparisons between modelled and measured temperatures show large differences. Thus, for an accurate inclusion of regional flow processes and thermal convection, a proper representation of the geometry of the anticlinal Apulian platform and a karstified, highly permeable layer at the interface between the reservoir and its sedimentary cover is necessary. Such a refined model will also lead to a recalibration of the specific basal heat flow.