dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Impact of Nitrogen Fertilization on Soil Organic Matter in Forest Soils (INFOSOM)
VerfasserIn Stefan J. Forstner, Michael Tatzber, Katharina M. Keiblinger, Patrick Schleppi, Frank Hagedorn, Per Gundersen, Wolfgang Wanek, Martin Gerzabek Link zu Wikipedia, Sophie Zechmeister-Boltenstern
Konferenz EGU General Assembly 2014
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 16 (2014)
Datensatznummer 250098538
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2014-14225.pdf
 
Zusammenfassung
Anthropogenic induced nitrogen (N) deposition has been reported to increase carbon (C) storage in boreal forest soils. However, it is unclear if this also applies to temperate forests where primary production, and hence C inputs to soil, are less limited by N. Likewise, litter decomposition and soil organic matter (SOM) stabilization have been shown to be affected by N inputs, although the exact mechanisms remain unclear. A major obstacle in assessing the net effect of increased N availability on soil C budgets is our limited understanding of the response of soil microorganisms and how this may feedback on SOM stabilization in the long run. To collectively address these questions we make use of two long-time forest N-addition experiments from Klosterhede, Denmark and Alptal, Switzerland which received 50-55 and 25 kg N ha-1 year-1, respectively, for over 20 years. At both sites 15N tracer has been applied with the N-addition treatment enabling isotope-specific analysis. Stands are dominated by Norway spruce (Picea abies) but differ in site characteristics such as soil type, elevation, and mean annual temperature. We investigate the effect of N addition on SOM quantity, quality and depth-distribution using state-of-the-art analytical techniques including isotope ratio mass spectroscopy (IRMS), solid state 13C-NMR, and mid-infrared spectroscopy. Effects on structure and function of soil microbial communities are assessed by standard soil microbiological methods including extracellular enzyme activities and complemented by soil metaproteomics, a rapidly developing novel approach. We hypothesize that long-term N addition will (1) foster the accumulation of soil organic matter (SOM) as well as (2) alter SOM quality and (3) its depth-distribution. Furthermore, N addition will also (4) induce changes in structure and function of microbial communities. First results on N effects on SOM quality and microbial activities in the Ah layer will be presented.