dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Inhomogeneities in particle composition of single, levitated aerosol particles observed by Mie resonance spectroscopy
VerfasserIn Ulrich Krieger, Daniel Lienhard, Sandra Bastelberger, Sarah Steimer
Konferenz EGU General Assembly 2014
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 16 (2014)
Datensatznummer 250098030
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2014-13666.pdf
 
Zusammenfassung
Recent observations have indicated that organic aerosol particles in the atmosphere may exist in an amorphous semi-solid or even solid (i.e. glassy) state, e.g. [1]. The influence of highly viscous and glassy states on the timescale of aerosol particle equilibration with respect to water vapor have been investigated for some model systems of atmospheric aerosol, e.g. [2,3]. In particular, it has been shown that the kinetics of the water absorption/desorption process is controlled entirely by liquid-phase diffusion of water molecules for a highly viscous aerosol particle. A liquid phase diffusion model based on numerically solving the non-linear diffusion equation predicts strong internal gradients in water concentration when condensed phase diffusion impedes the water uptake from the gas phase [2]. Here we observe and quantify the internal concentration gradients in single, levitated, micron size aerosol particles of aqueous shikimic acid using elastic Mie resonance spectroscopy. A single, aqueous particle is levitated in an electro-dynamic balance (for details see [2]), dried for several days at room temperature, cooled to the target temperature and exposed to a rapid change in relative humidity. In addition to measuring the elastically backscattered light of a “white light” LED source and recording the full spectrum with a spectrograph as in [2], we use a tunable diode laser (TDL) to scan high resolution TE- and TM spectra. This combination allows observing various Mie resonance mode orders simultaneously. Since we perform the experiment at low temperatures and low humidities the changes in the Mie-spectra due to water uptake are sufficiently slow to resolve the kinetics. Experimental Mie resonance spectra are inverted to concentration profiles of water within the particle by applying the numerical diffusion model [2] in conjunction with Mie calculations of multilayered spheres [4]. [1] A. Virtanen et al. (2010): An amorphous solid state of biogenic secondary organic aerosol particles, Nature 467, 824–827. [2] B. Zobrist et al. (2011): Ultra-slow water diffusion in aqueous sucrose glasses, Phys. Chem. Chem. Phys. 13, 3514-3526. [3] D. L. Bones, J. P. Reid, D. M. Lienhard, and U. K. Krieger (2012): Comparing the mechanism of water condensation and evaporation in glassy aerosol, PNAS 109, 11613-11618. [4] O. Peña and U. Pal (2009): Scattering of electromagnetic radiation by a multilayered sphere, Comput. Phys. Commun. 180, 2348-2354.