dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Monitoring shipping emissions with MAX-DOAS measurements of reactive trace gases
VerfasserIn Folkard Wittrock, Enno Peters, André Seyler, Lisa Kattner, Barbara Mathieu-Üffing, John P. Burrows, Maksym Chirkov, Andreas C. Meier, Andreas Richter, Anja Schönhardt, Stefan Schmolke, Norbert Theobald
Konferenz EGU General Assembly 2014
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 16 (2014)
Datensatznummer 250097348
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2014-12919.pdf
 
Zusammenfassung
Air pollution from ships contributes to overall air quality problems and it has direct health effects on the population in particular in coastal regions, and in harbor cities. In order to reduce the emissions the International Maritime Organisation (IMO) have tightened the regulations for air pollution. E.g. Sulfur Emission Control Areas (SECA) have been introduced where the sulfur content of marine fuel is limited. However, up to now there is no regular monitoring system available to verify that ships are complying with the new regulations. Furthermore measurements of reactive trace gases in marine environments are in general sparse. The project MeSMarT (Measurements of shipping emissions in the marine troposphere, www.mesmart.de) has been established as a cooperation between the University of Bremen and the German Bundesamt für Seeschifffahrt und Hydrographie (Federal Maritime and Hydrographic Agency) with support of the Helmholtz Research Centre Geesthacht to estimate the influence of ship emissions on the chemistry of the atmospheric boundary layer and to establish a monitoring system for main shipping routes. Here we present MAX-DOAS observations of NO2 and SO2 carried out during ship campaigns in the North and Baltic Sea and from two permanent sites close to the Elbe river (Wedel, Germany) and on the island Neuwerk close to the mouths of Elbe and Weser river. Mixing ratios of both trace gases have been retrieved using different approaches (pure geometric and taking into account the radiative transfer) and compared to in situ and air borne observations (see Kattner et al., Monitoring shipping emissions with in-situ measurements of trace gases, and Meier et al., Airborne measurements of NO2 shipping emissions using imaging DOAS) observations. Furthermore simple approaches have been used to calculate emission factors of NOx and SO2 for single ships.