dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel An integrated sensing technique for smart monitoring of water pipelines
VerfasserIn Romeo Bernini, Ilaria Catapano, Francesco Soldovieri, Lorenzo Crocco
Konferenz EGU General Assembly 2014
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 16 (2014)
Datensatznummer 250095460
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2014-10914.pdf
 
Zusammenfassung
Lowering the rate of water leakage from the network of underground pipes is one of the requirements that “smart” cities have to comply with. In fact, losses in the water supply infrastructure have a remarkable social, environmental and economic impact, which obviously conflicts with the expected efficiency and sustainability of a smart city. As a consequence, there is a huge interest in developing prevention policies based on state-of-art sensing techniques and possibly their integration, as well as in envisaging ad hoc technical solutions designed for the application at hand. As a contribution to this framework, in this communication we present an approach aimed to pursue a thorough non-invasive monitoring of water pipelines, with both high spatial and temporal resolution. This goal is necessary to guarantee that maintenance operations are performed timely, so to reduce the extent of the leakage and its possible side effects, and precisely, so to minimize the cost and the discomfort resulting from operating on the water supply network. The proposed approach integrates two sensing techniques that work at different spatial and temporal scales. The first one is meant to provide a continuous (in both space and time) monitoring of the pipeline and exploits a distributed optic fiber sensor based on the Brillouin scattering phenomenon. This technique provides the “low” spatial resolution information (at meter scale) needed to reveal the presence of a leak and call for interventions [1]. The second technique is based on the use of Ground Penetrating Radar (GPR) and is meant to provide detailed images of area where the damage has been detected. GPR systems equipped with suitable data processing strategies [2,3] are indeed capable of providing images of the shallow underground, where the pipes would be buried, characterized by a spatial resolution in the order of a few centimeters. This capability is crucial to address in the most proper way maintenance operations, by for instance reducing as much as possible the extent of the area where excavations have to undergo or suggesting a suitable timing for the interventions. REFERENCES [1] A.Minardo, G. Persichetti, G.Testa, L. Zeni, R.Bernini, “Long term structural health monitoring by Brillouin fiber-optic sensing: a real case”, Journal of Geophysical and Engineering, vol. 9, pp. S64-S69, 2012 [2] L. Crocco, G. Prisco, F. Soldovieri, N. J. Cassidy, "Early-stage leaking pipes GPR monitoring via microwave tomographic inversion", Journal of Applied Geophysics, vol. 67, pp. 270-277, 2009 [3] L. Crocco and F. Soldovieri, T. Millington and N. Cassidy, “Bistatic tomographic GPR imaging for incipient pipeline leakage evaluation”, Progress In Electromagnetics Research, PIER, vol. 101, pp. 307-321, 2010