dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel From South to North: flowering phenological responses at different geographical latitudes in 12 European countries
VerfasserIn Barbara Szabó, Annamária Lehoczky, Peter Filzmoser, Matthias Templ, Ferenc Szentkirályi, Rita Pongracz, Thomas Ortner, Can Mert, Bálint Czúcz
Konferenz EGU General Assembly 2014
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 16 (2014)
Datensatznummer 250094104
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2014-9489.pdf
 
Zusammenfassung
Phenological sensitivity of plants strongly depends on regional climate variability, moreover it is also influenced by large-scale atmospheric circulation patterns. Plants in different environmental conditions (determined by geographical latitude and longitude, altitude, continentality) may show diverse responses to climate change. The first results of an international cooperation aiming at the analysis of plant phenological data along a latitudinal gradient over 12 European countries (Macedonia, Bosnia and Herzegovina, Montenegro, Slovenia, Croatia, Hungary, Slovakia, Poland, Lithuania, Latvia, Estonia and Finland) are presented. The spatio-temporal changes in the flowering onset dates of common lilac (Syringa vulgaris L.) during the period of 1970-2000 were analysed. To characterise the environmental conditions driving the phenological responses, climatic variables (atmospheric pressure, air temperature, precipitation) obtained from a gridded observational dataset (E-OBS 9.0) and time series of the North Atlantic Oscillation (NAO) index were used. Preliminary results for this particular species found a gradual advance of mean flowering onsets along latitudes from 40°N to 65°N, at the rate of –0.12 to –0.32 day/year. Significant zonal differences were found in these rates, which can be explained by the sensitivity of flowering to climatic conditions while moving from Mediterranen to boreal regions of Europe. Thus our results were coherent with most observations in the literature, that higher latitudes can exhibit more pronounced responses, particularly in case of spring phenological events.