dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel New tool for CO2 flux partitioning with soil chamber flux implementation as a solution for site in topographically complex terrain
VerfasserIn Ladislav Šigut, Ivan Mammarella, Pasi Kolari, Eva Dařenová, Kateřina Novosadová, Justina Pietras, Radek Pokorny, Pavel Sedlák, Matthias Mauder
Konferenz EGU General Assembly 2014
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 16 (2014)
Datensatznummer 250093795
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2014-8865.pdf
 
Zusammenfassung
Eddy covariance method (EC) is one of the most accurate and direct approaches for measurements of fluxes of matter and energy on the level of an entire ecosystem. CO2 flux data acquired using the global network of EC flux towers help us to better understand the impacts of natural and anthropogenic phenomena on the global carbon balance. Comparisons among different sites are usually performed on annual sums of net ecosystem exchange (annual sums of NEE). Nowadays, EC is also used in complex terrain on the edge of its applicability (e.g. hills, cities) such as the mountain forest site at Bílý Kříž, Beskydy Mountains, Czech Republic. This requires revisiting of generally applied algorithms for computation of annual sums of NEE. The first aim of this study is the assessment of the performance and correctness of a newly developed tool for CO2 flux separation in comparison with standard algorithms. Simple models describing response of NEE to temperature and photosynthetic active radiation will be used for flux partitioning and a new approach to remove seasonality from datasets will be demonstrated. The second aim of this study will be to evaluate whether it is possible to estimate defensible annual sums of NEE for complex terrain site Bílý Kříž with the help of auxiliary biomass inventory and soil chamber measurements. Here the up-scaling of soil respiration to ecosystem respiration will be attempted and the resulting sums of NEE will be compared to independent biomass inventory estimates of net primary productivity. The importance of this research lies in extending the boundaries of EC application, thus contributing to better understanding of carbon balance in mountainous regions ecosystems which are not well represented within networks of EC flux towers. Acknowledgement This work was supported by CZ.1.05/1.1.00/02.0073, CZ.1.07/2.4.00/31.0056, OU SGS20/PřF/2014 grants and MICMoR graduate programme.