dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Uranus and Neptune structure models with ab initio EOS data for CH4, NH3, and H2O
VerfasserIn Nadine Nettelmann, Jonathan Fortney, Sebastien Hamel, Mandy Bethkenhagen, Ronald Redmer
Konferenz EGU General Assembly 2014
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 16 (2014)
Datensatznummer 250093739
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2014-8752.pdf
 
Zusammenfassung
Uranus and Neptune are supposed to be rich in ices in their deep interiors as their mean density closely resembles that of liquid water. Moreover, highly super-solar abundances of CH4 and CO, indicative of internal water, have been observed in their atmospheres. We here compare ab initio equations of state for CH4, NH3, and H2O and apply them to compute ice-rich, adiabatic internal structure models of Uranus and Neptune. The explicit consideration of the light ices CH4 and NH3 allows us to put tighter constraints on the minimum H/He abundance in their deep interior, which was found to be non-zero in all previous Uranus and in most of the Neptune models that were based on water as a proxy for ices. In particular, we investigate if hydrogen in the deep interior can solely be a result of assumed Carbon sedimentation (diamond rain), as an alternative scenario to the early accretion of H/He containing material during the formation of the planets. We conclude by discussing the deep internal H/He abundance in light of rock-rich and warmer-than-adiabatic interiors, which has been suggested to explain Uranus' low intrinsic luminosity. Our models serve to better understand the formation and bulk composition of Neptune-sized planets.