dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Impact of anthropomorphic soil genesis on hydraulic properties: the case of cranberry production
VerfasserIn Yann Périard, Silvio José Gumiere, Alain N. Rousseau, Jean Caron, Dennis W. Hallema
Konferenz EGU General Assembly 2014
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 16 (2014)
Datensatznummer 250093421
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2014-8120.pdf
 
Zusammenfassung
The construction of a cranberry field requires the installation of a drainage system which causes anthropic layering of the natural sequence of soil strata. Over the years, the soil hydraulic properties may change under the influence of irrigation and water table control. In fact, natural consolidation (drainage and recharge cycles), filtration and clogging soil pores by colloidal particle accelerated by water management will alter the hydrodynamic behavior of the soil (Gaillard et al., 2007; Wildenschild and Sheppard, 2013; Bodner et al., 2013). Today, advances in the field of tomography imagery allows the study a number of physicals processes of soils (Wildenschilds and Sheppard, 2013) especially for the transport of colloidal particles (Gaillard et al., 2007) and consolidation (Reed et al, 2006; Pires et al, 2007). Therefore, the main objective of this work is to analyze the temporal evolution of hydrodynamic properties of a sandy soil during repeated drainage and recharge cycles using a medical CT-scan. A soil columns laboratory experiment was setup in fall 2013, pressure head, input and output flow, tracer monitoring (KBr and ZrO2) and tomographic analyses have been used to quantify the temporal variation of the soil hydrodynamic properties of these soil columns. The results showed that the water management (irrigation and drainage) has strong effect on soil genesis and causes significant alteration of soil hydraulic properties, which may reduce soil drainage capacity. Knowledge about the mechanisms responsible of anthropic cranberry soil genesis will allow us to predict soil evolution according to several conditions (soil type, drainage system design, water management) to better anticipate and control their future negative effects on cranberry production. References: Bodner, G., P. Scholl and H.P. Kaul. 2013. Field quantification of wetting–drying cycles to predict temporal changes of soil pore size distribution. Soil and Tillage Research 133: 1-9. doi:http://dx.doi.org/10.1016/j.still.2013.05.006. Gaillard, J.-F., C. Chen, S.H. Stonedahl, B.L.T. Lau, D.T. Keane and A.I. Packman. 2007. Imaging of colloidal deposits in granular porous media by X-ray difference micro-tomography. Geophysical Research Letters 34: L18404. doi:10.1029/2007GL030514. Pires, L.F., O.O.S. Bacchi and K. Reichardt. 2007. Assessment of soil structure repair due to wetting and drying cycles through 2D tomographic image analysis. Soil and Tillage Research 94: 537-545. doi:http://dx.doi.org/10.1016/j.still.2006.10.008. Reed, A. H., Thompson, K. E., Zhang, W., Willson, C. S., & Briggs, K. B. (2006). Quantifying consolidation and reordering in natural granular media from computed tomography images. Advances in X-ray Tomography for Geomaterials, 263-268. Wildenschild, D. and A.P. Sheppard. 2013. X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems. Advances in Water Resources 51: 217-246. doi:http://dx.doi.org/10.1016/j.advwatres.2012.07.018.