dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Old carbon efflux from tropical peat swamp drainage waters
VerfasserIn Leena Vihermaa, Susan Waldron, Stephanie Evers, Mark Garnett, Jason Newton
Konferenz EGU General Assembly 2014
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 16 (2014)
Datensatznummer 250093277
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2014-7864.pdf
 
Zusammenfassung
Tropical peatlands constitute ~12% of the global peatland carbon pool, and of this 10% is in Malaysia1. Due to rising demand for food and biofuels, large areas of peat swamp forest ecosystems have been converted to plantation in Southeast Asia and are being subjected to degradation, drainage and fire, changing their carbon fluxes eg.2,3. Dissolved organic carbon (DOC) lost from disturbed tropical peat can be derived from deep within the peat column and be aged from centuries to millennia4 contributing to aquatic release and cycling of old carbon. Here we present the results of a field campaign to the Raja Musa Peat Swamp Forest Reserve in N. Selangor Malaysia, which has been selectively logged for 80 years before being granted timber reserve status. We measured CO2 and CH4efflux rates from drainage systems with different treatment history, and radiocarbon dated the evasion CO2 and associated [DOC]. We also collected water chemistry and stable isotope data from the sites. During our sampling in the dry season CO2 efflux rates ranged from 0.8 - 13.6 μmol m-2 s-1. Sediments in the channel bottom contained CH4 that appeared to be primarily lost by ebullition, leading to sporadic CH4 efflux. However, dissolved CH4 was also observed in water samples collected from these systems. The CO2 efflux was aged up to 582±37 years BP (0 BP = AD 1950) with the associated DOC aged 495±35 years BP. Both DOC and evasion CO2 were most 14C-enriched (i.e. younger) at the least disturbed site, and implied a substantial component of recently fixed carbon. In contrast, CO2 and DOC from the other sites had older 14C ages, indicating disturbance as the trigger for the loss of old carbon. 1Page et al., 2010 2Hooijer et al., 2010 3Kimberly et al., 2012 4Moore et al., 2013