dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Anomalous stress diffusion, Omori's law and Continuous Time Random Walk in the 2010 Efpalion aftershock sequence (Corinth rift, Greece)
VerfasserIn Georgios Michas, Filippos Vallianatos, Vassilios Karakostas, Eleftheria Papadimitriou, Peter Sammonds
Konferenz EGU General Assembly 2014
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 16 (2014)
Datensatznummer 250092222
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2014-6552.pdf
 
Zusammenfassung
Efpalion aftershock sequence occurred in January 2010, when an M=5.5 earthquake was followed four days later by another strong event (M=5.4) and numerous aftershocks (Karakostas et al., 2012). This activity interrupted a 15 years period of low to moderate earthquake occurrence in Corinth rift, where the last major event was the 1995 Aigion earthquake (M=6.2). Coulomb stress analysis performed in previous studies (Karakostas et al., 2012; Sokos et al., 2012; Ganas et al., 2013) indicated that the second major event and most of the aftershocks were triggered due to stress transfer. The aftershocks production rate decays as a power-law with time according to the modified Omori law (Utsu et al., 1995) with an exponent larger than one for the first four days, while after the occurrence of the second strong event the exponent turns to unity. We consider the earthquake sequence as a point process in time and space and study its spatiotemporal evolution considering a Continuous Time Random Walk (CTRW) model with a joint probability density function of inter-event times and jumps between the successive earthquakes (Metzler and Klafter, 2000). Jump length distribution exhibits finite variance, whereas inter-event times scale as a q-generalized gamma distribution (Michas et al., 2013) with a long power-law tail. These properties are indicative of a subdiffusive process in terms of CTRW. Additionally, the mean square displacement of aftershocks is constant with time after the occurrence of the first event, while it changes to a power-law with exponent close to 0.15 after the second major event, illustrating a slow diffusive process. During the first four days aftershocks cluster around the epicentral area of the second major event, while after that and taking as a reference the second event, the aftershock zone is migrating slowly with time to the west near the epicentral area of the first event. This process is much slower from what would be expected from normal diffusion, a result that is in accordance to earthquake triggering in global scale (Huc and Main, 2003) and aftershocks diffusion in California (Helmstetter et al., 2003). While other mechanisms may be plausible, the results indicate that anomalous stress transfer due to the occurrence of the two major events control the migration of the aftershock activity, activating different fault segments and having strong implications for the seismic hazard of the area. Acknowledgments. G. Michas wishes to acknowledge the partial financial support from the Greek State Scholarships Foundation (IKY). This work has been accomplished in the framework of the postgraduate program and co-funded through the action “Program for scholarships provision I.K.Y. through the procedure of personal evaluation for the 2011-2012 academic year” from resources of the educational program “Education and Life Learning” of the European Social Register and NSRF 2007- 2013. References Ganas, A., Chousianitis, K., Batsi, E., Kolligri, M., Agalos, A., Chouliaras, G., Makropoulos, K. (2013). The January 2010 Efpalion earthquakes (Gulf of Corinth, central Greece): Earthquake interactions and blind normal faulting. J. of Seism., 17(2), 465-484. Helmstetter, A., Ouillon, G., Sornette, D. (2003). Are aftershocks of large California earthquakes diffusing? J. of Geophys. Res. B, 108(10), 2483. Huc, M., Main, I. G. (2003). Anomalous stress diffusion in earthquake triggering: Correlation length, time dependence, and directionality. J. of Geophys. Res. B, 108(7), 2324. Karakostas, V., Karagianni, E., Paradisopoulou, P. (2012). Space-time analysis, faulting and triggering of the 2010 earthquake doublet in western Corinth gulf. Nat.Haz., 63(2), 1181-1202. Metzler, R., Klafter, J. (2000). The random walk's guide to anomalous diffusion: a fractional dynamics approach. Physics Reports, 339, 1-77. Michas, G., Vallianatos, F., Sammonds, P. (2013). Non-extensivity and long-range correlations in the earthquake activity at the West Corinth rift (Greece). Nonlin. Processes Geophys., 20, 713–724. Sokos, E., Zahradník, J., Kiratzi, A., Janský, J., Gallovič, F., Novotny, O., Kostelecký, J., Serpetsidaki, A., Tselentis, G.-A. (2012). The January 2010 Efpalio earthquake sequence in the western Corinth gulf (Greece). Tectonophysics, 530-531, 299-309. Utsu, T., Y. Ogata, Matsu’ura R. S. (1995). The centenary of the Omori formula for a decay law of aftershock activity. J. Phys. Earth, 43, 1– 33.