dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel A comparative approach for modeling of CO2 storage capacity and associated pressure response - analysis of data from South Scania site, Sweden
VerfasserIn Liang Tian, Zhibing Yang, Byeongju Jung, Saba Joodaki, Auli Niemi, Fritjof Fagerlund, Mikael Erlström
Konferenz EGU General Assembly 2014
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 16 (2014)
Datensatznummer 250091976
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2014-6509.pdf
 
Zusammenfassung
Comprehensive modeling with models of varying level of accuracy can give valuable information for the appraisal of CO2 storage potential and the assessment of risks for a given site. Here, we present a comparative modeling approach/workflow where a sequence of mathematical models of different levels of complexity are applied. These models span from semi-analytical solution to three-dimensional (3D) numerical simulator. The Scania Site, southwest Sweden where the geological model was developed within the MUSTANG project activities is selected for an example study. Initially, a semi-analytical approach is used to investigate pressure increase induced by CO2 injection so as to determine a viable injection strategy (including injection rate and number of injection wells) and parameter sensitivity. The result is then used as a starting point in subsequent numerical simulations with TOUGH2/ECO2N for 2D and 3D simulations. At the same time a simplified numerical model with the vertical equilibrium (VE) approach is also implemented. A systematic comparison is done between the different methods in terms of pressure response. CO2 spreading during both the injection and post-injection phase is also carefully compared between the 2D, VE and 3D numerical simulations. Through these comparisons we can thus identify a model with the appropriate level of complexity according to the objectives of the modeling study. Given the data available, we show an effective modeling strategy in achieving order-of-magnitude estimates on the behavior of the identified CO2 traps during and after the injection.