dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel δ¹³Catm and [CO2] measurements in Antarctic ice cores, 160 kyrBP - present
VerfasserIn Sarah Eggleston, Jochen Schmitt, Robert Schneider, Fortunat Joos, Hubertus Fischer
Konferenz EGU General Assembly 2014
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 16 (2014)
Datensatznummer 250091446
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2014-5740.pdf
 
Zusammenfassung
Measurements from Antarctic ice cores allow us to reconstruct atmospheric concentrations of climatically important gases including CO2 over the past 800 kyr. Such measurements show that [CO2] has varied in parallel with Antarctic temperatures on glacial-interglacial timescales. Knowledge of the variations of the stable carbon isotope of CO2, δ13Catm, can help us better understand the processes involved in these fluctuations. Here, we present a first complete δ13Catmrecord extending from 160 kyrBP to the present accompanied by δ15N2 measurements during Marine Isotope Stage 3 (MIS 3, 57 - 29 kyrBP). The present record, measured primarily on ice from the EPICA Dome C and Talos Dome ice cores, has an average resolution of 500 yr, focused mainly on the Last Glacial Maximum and termination (180 yr; Schmitt et al., 2012), MIS 3 (660 yr), and Termination II through MIS 5.4 (590 yr; Schneider et al., 2013). Throughout the record, δ13Catm varies between approximately -6.8 and -6.4oḞollowing a period of relatively constant δ13Catm at the end of MIS 6 (around -6.8), the boundaries of MIS 5 correspond roughly with the beginning and end of a gradual enrichment in this isotope. In comparison, the more recent record depicts three more abrupt excursions to lighter values around 63 - 59, 46, and 17 kyrBP, in each case followed by a slower return (0.4oover the course of 5 - 15 kyr) to more enriched isotopic values. These coincide with Heinrich events 6, 5, and 1, respectively. No direct correlation is observed between the concentration and carbon isotope of CO2 over the last 160 kyr. The data indicate rather that numerous processes, such as uptake and release of atmospheric CO2 by the ocean and land biosphere, perhaps influenced by regions of growing permafrost during MIS 3 and 4, acting on a variety of timescales must be considered in explaining the evolution of δ13Catm on glacial-interglacial timescales. References: Schmitt, J. et al. Science 336, 711-714 (2012) Schneider, R. et al. Clim. Past, 9, 2507-2523 (2013)