dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Inferring river properties with SWOT like data
VerfasserIn Pierre-André Garambois, Jérôme Monnier, Hélène Roux
Konferenz EGU General Assembly 2014
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 16 (2014)
Datensatznummer 250091294
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2014-5579.pdf
 
Zusammenfassung
Inverse problems in hydraulics are still open questions such as the estimation of river discharges. Remotely sensed measurements of hydrosystems can provide valuable information but adequate methods are still required to exploit it. The future Surface Water and Ocean Topography (SWOT) mission would provide new cartographic measurements of inland water surfaces. The highlight of SWOT will be its almost global coverage and temporal revisits on the order of 1 to 4 times per 22 days repeat cycle [1]. Lots of studies have shown the possibility of retrieving discharge given the river bathymetry or roughness and/or in situ time series. The new challenge is to use SWOT type data to inverse the triplet formed by the roughness, the bathymetry and the discharge. The method presented here is composed of two steps: following an inverse formulation from [2], the first step consists in retrieving an equivalent bathymetry profile of a river given one in situ depth measurement and SWOT like data of the water surface, that is to say water elevation, free surface slope and width. From this equivalent bathymetry, the second step consists in solving mass and Manning equation in the least square sense [3]. Nevertheless, for cases where no in situ measurement of water depth is available, it is still possible to solve a system formed by mass and Manning equations in the least square sense (or with other methods such as Bayesian ones, see e.g. [4]). We show that a good a priori knowledge of bathymetry and roughness is compulsory for such methods. Depending on this a priori knowledge, the inversion of the triplet (roughness, bathymetry, discharge) in SWOT context was evaluated on the Garonne River [5, 6]. The results are presented on 80 km of the Garonne River downstream of Toulouse in France [7]. An equivalent bathymetry is retrieved with less than 10% relative error with SWOT like observations. After that, encouraging results are obtained with less than 10% relative error on the identified discharge. References [1] E. Rodriguez, SWOT science requirements document, JPL document, JPL, 2012. [2] A. Gessese, K. Wa, and M. Sellier, Bathymetry reconstruction based on the zero-inertia shallow water approximation, Theoretical and Computational Fluid Dynamics, vol. 27, no. 5, pp. 721-732, 2013. [3] P. A. Garambois and J. Monnier, Inference of river properties from remotly sensed observations of water surface, under final redaction for HESS, 2014. [4] M. Durand, Sacramento river airswot discharge estimation scenario. http://swotdawg.wordpress.com/2013/04/18/sacramento-river-airswot-discharge-estimation-scenario/, 2013. [5] P. A. Garambois and H. Roux, Garonne River discharge estimation. http://swotdawg.wordpress.com/2013/07/01/garonne-river-discharge-estimation/, 2013. [6] P. A. Garambois and H. Roux, Sensitivity of discharge uncertainty to measurement errors, case of the Garonne River. http://swotdawg.wordpress.com/2013/07/01/sensitivity-of-discharge-uncertainty-to-measurement-errors-case-of-the-garonne-river/, 2013. [7] H. Roux and P. A. Garambois, Tests of reach averaging and manning equation on the Garonne River. http://swotdawg.wordpress.com/2013/07/01/tests-of-reach-averaging-and-manning-equation-on-the-garonne-river/, 2013.