dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Seismic hazard and risks based on the Unified Scaling Law for Earthquakes
VerfasserIn Vladimir Kossobokov, Anastasia Nekrasova
Konferenz EGU General Assembly 2014
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 16 (2014)
Datensatznummer 250091279
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2014-5563.pdf
 
Zusammenfassung
Losses from natural disasters continue to increase mainly due to poor understanding by majority of scientific community, decision makers and public, the three components of Risk, i.e., Hazard, Exposure, and Vulnerability. Contemporary Science is responsible for not coping with challenging changes of Exposures and their Vulnerability inflicted by growing population, its concentration, etc., which result in a steady increase of Losses from Natural Hazards. Scientists owe to Society for lack of knowledge, education, and communication. In fact, Contemporary Science can do a better job in disclosing Natural Hazards, assessing Risks, and delivering such knowledge in advance catastrophic events. Any kind of risk estimates R(g) at location g results from a convolution of the natural hazard H(g) with the exposed object under consideration O(g) along with its vulnerability V(O(g)). Note that g could be a point, or a line, or a cell on or under the Earth surface and that distribution of hazards, as well as objects of concern and their vulnerability, could be time-dependent. There exist many different risk estimates even if the same object of risk and the same hazard are involved. It may result from the different laws of convolution, as well as from different kinds of vulnerability of an object of risk under specific environments and conditions. Both conceptual issues must be resolved in a multidisciplinary problem oriented research performed by specialists in the fields of hazard, objects of risk, and object vulnerability, i.e. specialists in earthquake engineering, social sciences and economics. To illustrate this general concept, we first construct seismic hazard assessment maps based on the Unified Scaling Law for Earthquakes (USLE). The parameters A, B, and C of USLE, i.e. log N(M,L) = A – B•(M-6) + C•log L, where N(M,L) is the expected annual number of earthquakes of a certain magnitude M within an area of linear size L, are used to estimate the expected maximum magnitude in 50 years and the corresponding expected ground shaking intensity in a cell g of a uniform grid of the region of interest. Then such a seismic hazard map is used to generate earthquake risk maps based on the exposed population density. Some oversimplified convolutions R(g) = H(g)•gP•F(gP) of seismic hazard assessment maps H(g) are applied in a few regions with population density distribution P of vulnerability V=F(gP), where g is a cell of a uniform grid and gP is the integral of the population density over the cell g.