dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Evaluation of tropospheric SO2 retrieved from MAX-DOAS measurements in Xianghe, China
VerfasserIn Ting Wang, Francois Hendrick, Pucai Wang, Guiqian Tang, Katrijn Clemer, Huan Yu, Caroline Fayt, Christian Hermans, Clio Gielen, Gaia Pinardi, Nicolas Theys, Hugues Brenot, Michel Van Roozendael
Konferenz EGU General Assembly 2014
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 16 (2014)
Datensatznummer 250090698
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2014-4952.pdf
 
Zusammenfassung
Ground-based Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) measurements of sulfur dioxide (SO2) have been performed at the Xianghe station (39.77°N, 117.0°E) located at ~50 km South-East of Beijing from March 2010 to February 2013. Tropospheric SO2 vertical profiles and corresponding vertical column densities (VCDs), retrieved by applying the Optimal Estimation Method to the MAX-DOAS observations, have been used to study the seasonal and diurnal cycles of SO2, in combination to correlative measurements from in situ instruments, as well as meteorological data. A marked seasonality is observed in both SO2 VCD and surface concentration, with a maximum in winter (February) and a minimum in summer (July). This can be explained by the larger emissions in winter due to the domestic heating and more favorable meteorological conditions for the accumulation of SO2 close to the ground during this period. Wind speed and direction are also found to be two key parameters in controlling the level of the SO2-related pollution at Xianghe. In the case of east or southwest wind, the SO2 concentration rises with the increase of the wind speed, since heavy polluting industries are located to the east and southwest of the station. In contrast, when wind comes from other directions, the stronger the wind, the less SO2 is observed. Regarding the diurnal cycle, the SO2 amount is larger in the early morning and late evening and lower at noon, in line with the diurnal variation of pollutant emissions and atmospheric stability. The observed diurnal cycles of MAX-DOAS SO2 surface concentration are also in very good agreement (correlation coefficient close to 0.9) with those from collocated in-situ data, demonstrating the reliability and robustness of our retrieval.