dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Sensitive analysis of low-flow parameters using the hourly hydrological model for two mountainous basins in Japan
VerfasserIn Kazumasa Fujimura, Yoshihiko Iseri, Shinjiro Kanae, Masahiro Murakami
Konferenz EGU General Assembly 2014
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 16 (2014)
Datensatznummer 250090592
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2014-4846.pdf
 
Zusammenfassung
Accurate estimation of low flow can contribute to better water resources management and also lead to more reliable evaluation of climate change impacts on water resources. In the early study, the nonlinearity of low flow related to the storage in the basin was suggested by Horton (1937) as the exponential function of Q=KSN, where Q is the discharge, S is the storage, K is a constant and N is the exponent value. In the recent study by Ding (2011) showed the general storage-discharge equation of Q = KNSN. Since the constant K is defined as the fractional recession constant and symbolized as Au by Ando et al. (1983), in this study, we rewrite this equation as Qg=AuNSgN, where Qg is the groundwater runoff and Sg is the groundwater storage. Although this equation was applied to a short-term runoff event of less than 14 hours using the unit hydrograph method by Ding, it was not yet applied for a long-term runoff event including low flow more than 10 years. This study performed a sensitive analysis of two parameters of the constant Au and exponent value N by using the hourly hydrological model for two mountainous basins in Japan. The hourly hydrological model used in this study was presented by Fujimura et al. (2012), which comprise the Diskin-Nazimov infiltration model, groundwater recharge and groundwater runoff calculations, and a direct runoff component. The study basins are the Sameura Dam basin (SAME basin) (472 km2) located in the western Japan which has variability of rainfall, and the Shirakawa Dam basin (SIRA basin) (205km2) located in a region of heavy snowfall in the eastern Japan, that are different conditions of climate and geology. The period of available hourly data for the SAME basin is 20 years from 1 January 1991 to 31 December 2010, and for the SIRA basin is 10 years from 1 October 2003 to 30 September 2013. In the sensitive analysis, we prepared 19900 sets of the two parameters of Au and N, the Au value ranges from 0.0001 to 0.0100 in steps of 0.0001 and the N value ranges from 1.0 to 100.0 in steps of 0.5. The analysis was evaluated by the Average of Daily runoff Relative Error (ADRE). The results showed that the minimum value of the ADRE is 32.199% using N=100.0 and Au=0.0003 for the SAME basin, and is 38.058% using N=0.0003 and Au=70.0 for the SIRA basin. Log-log plot for optimal sets of Au and N suggested accurate simulation of low flow can be achieved when relation of Au and N are in exponential form. The equations are Au=1/{26.91N1.041} and Au=1/{34.55N1.060} for each basin, which have similar gradients, but have different intercept on the log-log graph. From this study, it is found that the optimal sets of Au and N, which obtained lower relative error in the hydrological analysis, are formulated using the exponent equation. Acknowledgements This work was supported by the Research Program on Climate Change Adaption (the RECCA Project) of the Ministry of Education, Culture, Sports, Science and Technology. References Ding, J. Y. (2011) A measure of watershed nonlinearity: interpreting a variable instantaneous unit hydrograph model on two vastly different sized watersheds. Hydrol. Earth Syst. Sci., 15, 405–423. Fujimura, K., Shiraha, K., Kanae, S. & Murakami, M. (2012) Development of the hourly hydrological model for mountainous basins using the storage function method and the Diskin–Nazimov infiltration model. In: Models – Repositories of Knowledge, IAHS Publ. 355, 338–344. Horton, R. E. (1936) Natural stream channel-storage. Trans. Am. Geophys. Union, 17, 406–415. Ando, Y., Musiake, K. & Takahasi, Y. (1983) Modelling of hydrologic processes in a small natural hillslope basin, based on the synthesis of partial hydrological relationships. Journal of Hydrology, 64, 311–337.